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I. The Classical Models

of Random Graphs
The theory of random graphs was founded
by Erdős and R ényi in the late 1950s and early 1960s.

Gn,m: random graph on [n] = {1, . . . , n}, with m
edges selected at random (studied by ER);

Gn,p: random graph on [n] = {1, . . . , n}, with edges
selected with probability p, independently of each other
(introduced by Gilbert).

For p = m/
(

n
2

)

the two models are just about equivalent.



Giant Component – Percolation

Gn,p: ‘mean field model’

percolation ↔ giant component

(open cluster with cn sites)

critical probability

↔ threshold for a giant component

Erdős and R ényi 1961: pc = (1 + o(1))/n.



Further Classical Models

G(n, r − reg):
the space or r-regular graphs (every degree is r)

and G(n, k − out):
first every vertex ‘sends out’ k edges chosen at random, the
graph is formed by all these edges.

All these classical random graphs are homogeneous :
their vertices are ‘interchangeable’; for p ‘small’, p ∼ c/n,
say, the degree sequence has close to Poisson distribution.



II. Inhomogeneous Random Graphs

Watts and Strogatz (1998):
Large-scale real-world graphs look ‘random’ (no clearly
discernible structure), but are not similar to the
Erdős–Rényi graphs (or any of the widely studied random
graphs): they are far from homogeneous .

E.g., in many real-life graphs, the diameter (maximal
distance between vertices) is small
(as in a ‘classical’ random graph),

but the ‘clustering coefficient’ (the probability that your
friend’s friend is your friend) is much larger than in a
classical random graph.



Some Large-Scale Real-life Networks

The Graph of the World-Wide Web

The Internet Graph

Networks of Scientific Citations

Scientific Collaboration Networks

The Network of Film Actors

The Word Web of a Language

Food Webs

Numerous Biological Networks



Power Law

Barab ási and Albert and
Faloutsos, Faloutsos and Faloutsos:

‘power law in networks’ (e.g., of the ‘internet
topology’)

Related models:
Barab ási, Albert and Jeong; Kumar, Raghavan,
Rajagopalan, Sivakumar, Tomkins and Upfal;
Broder, Kumar, Stata and many others

Scale-free nature is emphasized –
power law for degree distribution



Networks and Models

In the last decade: much work on large-scale
real-world networks, and their models.
• Direct studies of the real-world networks themselves,
measuring various properties such as degree-distribution,
diameter, clustering, etc.

• Constructions of new random graph models motivated by
this study.
• Computer experiments on the new models, measuring
their properties.

• Heuristic analysis of the new models to predict their
properties.

• Rigorous mathematical study of these models,
to prove theorems about them.



Aim

Construct models of inhomogeneous random
graphs which are flexible and general, and are
accessible to rigorous mathematical analysis.

Main questions: degree sequence, diameter,
clustering coefficient, robustness (resistance to
random breakdown), vulnerability (resistance to
a malicious attack), etc.

[A system is up an running if there is a giant
component.]

A model is ‘satisfactory’ if it gives the ‘right
answers to questions like these.



III. Two Examples

III.1. The Model of Dubins

In 1984 Dubins introduced the random graph Gn(c) for
0 < c < ∞ and n ≥ 1.
Vertex set: [n] = {1, . . . , n}.
Each pair ij is an edge independently of all other events,

with probability c/j (really, min{c/j,1}).

Question: for what values of c does Gn(c) have
a giant component?



III.2. The CHKNS model

In 1991 Callaway, Hopcroft, Kleinberg, Newman
and Strogatz introduced (essentially) the foll. model.

At each time step, a new vertex is added.

At time t (when we have t vertices), join each pair of

vertices with probability δ/
(

t

2

)

.

The edges chosen are independent of each other for
different pairs and/or different times.

Fn(δ) = the graph obtained at time n.

Also, Fn(δ) and Gn(2δ) are similar.



Results

Kalikow and Weiss 1988: whp (with high prob.)
for c < 1/4 the graph Gn(c) has only small components,
while for c > 1 it has a giant component.

The conjecture remained: the critical value is 1.



Results

Kalikow and Weiss 1988: whp (with high prob.)
for c < 1/4 the graph Gn(c) has only small components,
while for c > 1 it has a giant component.

The conjecture remained: the critical value is 1.

Surprise: in 1989, Shepp proved that for c > 1/4 the
graph Gn(c) has a giant component.

Thus for Gc the critical constant is 1/4.

A similar result for a more general model was
proved by Durrett and Kesten in 1990.



Sharp Results

A number of precise results have been proved
by Durrett, and B., Janson and Riordan.

Oliver Riordan has proved the following
difficult and surprising result:

As ε → 0, whp we have

C1(Gn(1/4 + ε)) = exp

(

−1 + o(1)

2
√

ε

)

n.

Infinite order phase transition with rather
precise speed.



Simple Inhomogeneous Models

Inhomogeneous random graphs on V = [n]:

1. Finite type graphs: V = V1 ∪ V2 ∪ V3,

P(i ∼ j) = chk

n , for i ∈ Vh and j ∈ Vk.
2. LCD model: rather close to P(i ∼ j) = 1√

ij
.

3. The Dubins and CHKNS models:

P(i ∼ j) = 1
j if i < j.

When is there a giant component?
Robustness? Vulnerability?



IV. THE BJR MODEL
of B, Janson and Riordan

This is a very general model of random graphs defined in
2007 that includes exactly many of the specific spaces of
inhomogeneous random graphs that have been studied.

BJR proved precise results about the component structure
of a random graph in this model by relating it to the survival
probability of a multitype branching process, and the norm
of a certain operator.

We also proved detailed results about the phase transition
in this model, especially the numbers of vertices and edges
in the giant component, and

the stability of the giant component under the addition and
deletion of edges.



IV.1. The Construction

Let S be a separable metric space equipped with a Borel
probability measure µ.
(Main example: S = (0, 1] and µ is the Lebesgue measure.)

Kernel on S: symmetric non-negative function on S × S.

For each n we have a deterministic or random sequence
xn = (x1, . . . , xNn

) of points in S such that the empirical
distribution

µn =
1

n

Nn
∑

i=1

δxi

converges in probability to µ as n → ∞, with convergence in
the usual space of probability measures on S.



We define a random graph Gn(κ) = GV(n, κ) on
{1, 2, . . . , Nn} by taking the probability that ij is an edge to
be κ(xi, xj)/n, with all edges chosen independently.

Think of Gn(κ) as a sparse inhomogeneous
random graph with some edge-probabilities
much larger than their average.

Our main interest is in the structure (especially
the component structure) of the obtained
random graph for large values of n.

Take a random graph, and then consider
percolation on it.



IV.2. Branching Processes

To study the components of G(n, κ), we use the multi-type
Galton–Watson branching process with type space S,
where a particle of type x ∈ S is replaced in the next
generation by a set of particles distributed as a Poisson
process on S with intensity κ(x, y) dµ(y).
(Thus, the number of children with types in a subset A ⊆ S
has a Poisson distribution with mean

∫

A κ(x, y) dµ(y) ).

Write Xκ for this branching process, started with a single
particle chosen at random, distributed according to µ.

ρ(κ) is the probability that the branching process Xκ
survives for eternity.



Operators

Let Tκ be the integral operator on (S, µ) with kernel κ,
defined by

(Tκf)(x) =

∫

S

κ(x, y)f(y) dµ(y)

for any non-negative (measurable) function f .
[Thus this integral is defined (finite or +∞) for a.e. x.]

The norm:

‖Tκ‖ = sup
{

‖Tκf‖2 : f ≥ 0, ‖f‖2 ≤ 1
}

≤ ∞.



IV.3. Results

Theorem. (The Giant Component:

existence, size, uniqueness)

Let (κn) be a graphical sequence of kernels on

a vertex space V with limit κ.

If ‖Tκ‖ ≤ 1, then C1

(

GV(n, κn)
)

= op(n);

if ‖Tκ‖ > 1, then C1

(

GV(n, κn)
)

= Θ(n) whp.



Thm ctd. For any ε > 0, whp we have
1

n
C1

(

GV(n, κn)
)

≤ ρ(κ) + ε.

If κ is irreducible, then
1

n
C1(G

V(n, κn))
p→ ρ(κ),

and
C2(G

V(n, κn)) = o(n).

In all cases ρ(κ) < 1; furthermore, ρ(κ) > 0 if
and only if ‖Tκ‖ > 1.



Corollary. Let κ be a graphical kernel on a vertex
space V , and define the random graph
G = GV(n, κ). Consider bond percolation on G.
Then the critical probability pc is ‖Tκ‖−1.

More precisely, if p ≤ ‖Tκ‖−1, then

C1

(

GV(n, pκ)
)

= op(n),

while if p > ‖Tκ‖−1 and κ is irreducible, then

C1

(

GV(n, pκ)
)

= ρ(pκ)n + op(n) = Θp(n).



Corollary. Let κ be a graphical kernel on a vertex

space V . Then

∀ c > 0, GV(n, cκ) has a giant comp. whp

iff

||Tκ|| = ∞.

Otherwise the existence of a giant component
has a finite threshold c0 > 0.



QUESTIONS REMAIN

How can we tell that a space of random graphs
models a certain large-scale real-world graph?

Degree sequence? Diameter? Robustness?

Other properties?

Not enough!

We need a METRIC on the space of finite graphs
which ties our given graphs to the models.



V. DENSE GRAPHS
Borgs, Chayes, Lov ász, Sós, Szegedy and
Vesztergombi – several substantial papers

Given graphs F and G, XF (G) is the number
of (not nec. ind.) copies of F in G.

The number of embeddings of F into G is
emb(F, G) = aut(F )XF (G).

With k = |F | and n = |G|,
s(F, G) = emb(F,G)

n(k)
= XF (G)

XF (Kn) ∈ [0, 1].

is the normalized F -count.



Subgraph Distance

F = {F1, F2, . . .}: isom. classes of fin. grs.

s maps F into [0, 1]∞ (or into [0, 1]F ):

s(G) = (si(G))∞i=1 ∈ [0, 1]∞,

where si(G) = s(Fi, G).

d: any metric on [0, 1]∞ inducing the product

topology; e.g., d(s, t) =
∑

2−i|si − ti|.
The subgraph distance of two graphs G1, G2 is

dsub(G1, G2) = d(s(G1), s(G2)).



Kernels – Graphons

Kernel (graphon): a symmetric measurable
function from [0, 1]2 to [0, 1].

graph G → kernel κG

Given a finite graph F with vertex set
{1, 2, . . . , k}, and a kernel κ,

s(F, κ) =
∫

[0,1]k

∏

ij∈E(F ) κ(xi, xj)
∏k

i=1 dxi.

Gives an extension of dsub to kernels.



Cauchy Sequences

Theorem (Lov ász and Szegedy, 2006)

Let (Gn) be a Cauchy sequence in (F , dsub)
with |Gn| → ∞. Then there is a kernel κ
such that s(F, Gn) → s(F, κ).

The completion of (F , dsub) is obtained by
adding to F the set K of all equivalence classes
of kernels, and using the map

s : F ∪ K → [0, 1]∞ to extend dsub to F ∪ K.



The metrics dsub and dcut

Theorem (Borgs, Chayes, Lov ász, Sós, Szegedy
and Vesztergombi)

Let (Gn) be a sequence of graphs and let κ be
a kernel. Then

dsub(Gn, κ) → 0 if and only if dcut(Gn, κ) → 0.

Corollary. Let κ and κ′ be two kernels. Then
s(F, κ) = s(F, κ′) for every F if and only if
dcut(κ, κ′) = 0.



Percolation on General Sequences

Theorem (B., Borgs, Chayes, Riordan)

Let (Gn) be a sequence of dense graphs with
|Gn| = n, let λn be the largest eigenvalue of the
adjacency matrix of Gn. For a constant c > 0,

set pn = c/λn. (< 1 if n is large)

(a) If c ≤ 1, then all components of Gn(pn) are
of size op(n).

(b) If c > 1, then the the largest component of
Gn(pn) has size Θ(n) whp.



VI. SPARSE GRAPHS

This is joint work with Oliver Riordan (Oxford).

Given a function p = p(n) and a graph G
with n vertices and e(G) = Θ(pn2) edges, set

sp(F, G) = emb(F,G)

pe(F ) (n)|F |
= aut(F ) XF (G)

pe(F ) XF (Kn)
.

Clearly,

sp(F, G) = emb(F,G)

E

(

emb(F,G(n,p))
).



If 0 < p < 1 is constant, then we can define a

map s as before, but now s maps F into the

compact space
∏

F∈F [0, p−e(F )].

However, if p = p(n) = o(1) then in order to

work in a compact space, we need that

sp(F, G) ≤ cF for all G and F we consider.

[The ‘probability’ p is often suppressed.]



Assumptions

Sequence (Gn), usually |Gn| = n; not all n.

Assumption 1 (bounded subgraph counts). For
each F , the parameter sp(F, Gn) is bounded.

Assumption 2 (exponentially bdd subgr. counts).
There is a constant C such that, for each fixed
F , we have

lim sup sp(F, Gn) ≤ Ce(F ) as n → ∞.

(In the dense case these ineqs always hold.)



Kernels

As in BJR, a kernel is a symmetric, measurable

(but not necessarily bounded) function

κ : [0, 1]2 → R+.



VI.1. Almost Dense Graphs

Almost Dense Case: p(n) = n−o(1)

Conjecture. (Main Conjecture)

Let p = p(n) = n−o(1), and let C > 0 be

constant. Suppose that (Gn) is a sequence of

graphs with |Gn| = n such that, for every F ,

sp(F, Gn) converges to some constant

0 ≤ cF ≤ Ce(F ). Then there is a bounded kernel

κ such that cF = s(F, κ) for every F .



The Uniform Case

By convexity, for p constant, only κ = p a.e. satisfies
sp(K2, κ) = sp(C4, κ) = 1.

Conjecture. (Basic Conjecture) Let

p = p(n) = n−o(1), and let (Gn) be a sequence

of graphs with |Gn| = n, e(Gn) = p
(

n
2

)

,

sp(C4, Gn) → 1, and supn sp(F, Gn) < ∞ for

each F (needed!) . Then sp(F, Gn) → 1 for every

F . (May even assume ∃C > 0 s.t.

lim supn sp(F, Gn) ≤ Ce(F ) ∀F .)



Difficulties

We cannot even prove that there is a single
triangle, let alone about p3n3/6 triangles. (!!)

Many of the arguments from the dense case do not carry
over. E.g., almost all, i.e., all but o(n2), pairs of vertices have
about the right number of common neighbours.

In the dense case almost all (all but o(pn2) = o(n2)) edges
are in the right number of triangles, and hence
tp(K3, Gn) → 1.

In the sparse case (with o(n2) edges), one should rule out
the possibility that many of these pairs of vertices fall in the
o(n2) set with too few common neighbours.



VII. Models for Metrics

Problem. Given a metric d on graphs, find a
‘natural’ family of random graph models with the
following two properties:

(i) for each model, the sequence of random
graphs (Gn) generated by the model is Cauchy
with respect to d with probability 1, and

(ii) for any sequence (Gn) with |Gn| = n that is
Cauchy with respect to d, there is a model from
the family such that, if we interleave (Gn) with a
sequence of random graphs from the model, the
resulting sequence is still a.s. Cauchy.



Answers?

For d = dcut the answer is yes in the dense case, since
(Gn) is Cauchy if and only if dcut(Gn, κ) → 0 for some kernel
κ, while the dense inhomogeneous random graphs G(n, κ)
converge to κ in dcut with probability 1. Thus our family
consists of essentially one model G(n, κ) for each kernel κ.

In the sparse case: no entirely satisfactory answer
for any of the natural metrics one should consider.

Assuming that np → ∞, there is an almost completely
satisfactory answer for dcut: if we impose the Bounded
Density Assumption (whatever that is!), the sparse
inhomogeneous models Gp(n, κ) answer this Question.



Answers?

In the extremely sparse case, with p(n) = 1/n, the model
G1/n(n, κ) is very unsatisfactory for an arbitrary
sequence of sparse graphs, since it produces graphs with
essentially no cycles.

Very recently B., Janson and Riordan proposed
a more general (and still rather natural) model.



VIII. Final Remarks

There is a rich theory of sparse inhomogeneous
random graphs waiting to be explored.

The beginnings of such a theory can be found in the papers
of B., Janson and Riordan in the very sparse case,
and of Borgs, Chayes, Lovász, Sós, Szegedy and
Vesztergombi in the dense case.

Task: build a theory encompassing both and everything
in-between. B. and Riordan has made some progress in
this direction.

This is unlikely to be easy: there are numerous
unexpected difficulties and pitfalls, and much work has to
be done even to arrive at concrete problems.
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