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Introduction

The six-vertex model, or the model of two-

dimensional ice, is stated on a square lattice
with arrows on edges. The arrows obey the

rule that at every vertex there are two arrows

pointing in and two arrows pointing out. Such
rule is sometimes called the ice-rule. There

are only six possible configurations of arrows
at each vertex, hence the name of the model.

(1) (2) (3)

(4) (5) (6)

Fig. 1. The six possible configurations of

arrows at each vertex.
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We will consider the domain wall boundary con-

ditions (DWBC) in which the arrows on the up-

per and lower boundaries point in the square,

and the ones on the left and right boundaries

point out. One possible configuration with

DWBC on the 4×4 lattice is shown on Fig. 2.

Fig. 2. An example of 4 × 4 configuration.
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The name of square ice comes from the two-

dimensional arrangement of water molecules,

H2O, with oxygen atoms at the vertices of a

lattice and one hydrogen atom between each

pair of adjacent oxygen atoms. We place an

arrow in the direction from a hydrogen atom

toward an oxygen atom if there is a bond be-

tween them.
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H H H H

Fig. 3. The corresponding ice model.
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For each possible vertex state we assign the

weight wi, i = 1, . . . ,6, and define, as usual,

the partition function as a sum of the configu-

ration weights over all possible arrow configu-

rations, with a configuration weight given as a

product of the corresponding vertex weights:

ZN =
∑

arrow configurations

w(σ),

w(σ) =
∏

x
wσ(x) =

6
∏

i=1

w
ni(σ)
i ,

where σ(x) is the vertex configuration number

of σ at the vertex x and ni(σ) is the number

of vertices in the state i in σ. Here σ is a

configuration on an N × N square lattice.

The Gibbs measure:

µN(σ) =
w(σ)

ZN
.
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Problems

We will be interested in two problems:

1. What is the large N asymptotic behavior

of ZN?

2. What are typical configurations σ with re-

spect to the Gibbs measure, as N → ∞?
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The six-vertex model has six parameters: the

weights wi. By using some conservation laws

it can be reduced to only two parameters.

Conservation laws

Proposition 1. For any configuration σ of the

six vertex model with DWBC, we have that

n1(σ) = n2(σ),

and

n3(σ) = n4(σ).

Also,

n5(σ) − n6(σ) = N.
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The conservation laws allow to reduce the weights

w1, . . . , w6 to 3 parameters. Namely, we have

that

w
n1
1 w

n2
2 w

n3
3 w

n4
4 w

n5
5 w

n6
6 = CNan1an2bn3bn4cn5cn6,

where

a =
√

w1w2, b =
√

w3w4, c =
√

w5w6,

and the constant

CN =

(

w5

w6

)
N
2

.

This implies the relation between the partition

functions,

ZN(w1, w2, w3, w4, w5, w6) = CNZN(a, a, b, b, c, c),

and between the Gibbs measures,

µN(σ;w1, w2, w3, w4, w5, w6) = µN(σ; a, a, b, b, c, c).
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Therefore, for the DWBC, the general weights

are reduced to the case when

w1 = w2 = a, w3 = w4 = b, w5 = w6 = c.

Furthermore,

ZN(a, a, b, b, c, c) = cN2
ZN

(

a

c
,
a

c
,
b

c
,
b

c
,1,1

)

and

µN(σ; a, a, b, b, c, c) = µN

(

σ;
a

c
,
a

c
,
b

c
,
b

c
,1,1

)

,

so that the general weights reduce to the two

parameters, a
c ,

b
c .
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Phase Diagram

Introduce the parameter

∆ =
a2 + b2 − c2

2ab
.

The phase diagram of the six-vertex model

consists of the three phase regions: ferroelec-

tric phase region, ∆ > 1; the anti-ferroelectric

phase region, ∆ < −1; and, the disordered

phase region, −1 < ∆ < 1.

0 1

D

F

F

AF

a/c

b/c

1 A(1)

A(2)

A(3)
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In these phase regions we parameterize the

weights in the standard way: in the ferroelec-

tric phase region,

a = sinh(t − γ), b = sinh(t + γ), c = sinh(2γ),

|γ| < t,

in the anti-ferroelectric phase region,

a = sinh(γ − t), b = sinh(γ + t), c = sinh(2γ),

|t| < γ,

and in the disordered phase region

a = sin(γ − t), b = sin(γ + t), c = sin(2γ),

|t| < γ.
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Large N-asymptotics of the parti-

tion function

Disordered phase region

Theorem 2. (Bleher and Fokin, 2006). There

exists ε > 0 such that

ZN = CNκFN2 (

1 + O(N−ε)
)

,

where C > 0,

F =
π[cos(2t)− cos(2γ)]

4γ cos πt
2γ

,

and

κ =
1

12
− 2γ2

3π(π − 2γ)
.

Pavel Bleher and Vladimir Fokin, Exact solu-

tion of the six-vertex model with domain wall

boundary condition. Disordered phase. Com-

mun. Math. Phys. 268 (2006), 223–284.
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The six-vertex model with periodic boundary

conditions (PBC) was found by Lieb by means

of the Bethe Ansatz,

E. H. Lieb, Phys. Rev. Lett. 18 (1967) 692;

Phys. Rev. Lett. 18 (1967) 1046-1048; Phys.

Rev. Lett. 19 (1967) 108-110; Phys. Rev.

162 (1967) 162.

See also

B. Sutherland, Phys. Rev. Lett. 19 (1967)

103-104,

and

E. H. Lieb and F. Y. Wu, Two dimensional

ferroelectric models, in Phase Transitions and

Critical Phenomena, C. Domb and M. Green

eds., vol. 1, Academic Press (1972) 331-490.

It is interesting to notice that the free energy

with DWBC and the one with PBC are differ-

ent.
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Ferroelectric Phase Region

(joint work with Karl Liechty)

Ferroelectric phase region: b > a + c or a >

b + c. We will assume b > a + c.

Parametrization:

a = sinh(t − γ), b = sinh(t + γ),

c = sinh(2γ), 0 < γ < t.

14



Theorem 3. In the ferroelectric phase region

with t > γ > 0, for any ε > 0, as N → ∞,

ZN = CGNFN2
[

1 + O

(

e−N1−ε
)]

,

where C = 1 − e−4γ, G = eγ−t, and F = b =

sinh(t + γ).

Reference

P.M. Bleher and K. Liechty, Exact solution of

the six-vertex model with domain wall bound-

ary conditions. Ferroelectric phase.

arXiv:0712.4091 [math.ph]; (to appear in CMP)
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Critical Line between Disor-
dered and Ferroelectric Phase
Regions

Consider now the critical line: b = a + c.

Parameterization:

b =
α + 1

2
, a =

α − 1

2
, c = 1.

Theorem 4. On the critical line, as N → ∞,

ZN = CNκG
√

NFN2
[1 + O(N−1/2)] ,

where C > 0, κ = 1
4 , and

G = exp

[

−ζ

(

3

2

)√

a

π

]

, F = b .
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Reference

P.M. Bleher and K. Liechty, Exact solution of

the six-vertex model with domain wall bound-

ary conditions. Critical line between disordered

and ferroelectric phases.

arXiv:0802.0690 [math.ph]; (to appear in JSP).
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Sketch of the Proofs

Disordered Phase

The formula of Izergin and Korepin:

ZN =
(ab)N2

(

∏N−1
n=0 n!

)2
τN ,

where τN is the Hankel determinant,

τN = det

(

di+k−2φ

dti+k−2

)

1≤i,k≤N

,

and

φ(t) =
c

ab
.
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An elegant derivation of the Izergin-Korepin

formula from the Yang-Baxter equations is given

in the papers of Korepin and Zinn-Justin,

V. Korepin and P. Zinn-Justin, J. Phys. A 33

No. 40 (2000), 7053

and Kuperberg,

G. Kuperberg, Intern. Math. Res. Notes

(1996), 139-150.
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The Zinn-Justin formula

Suppose that

φ(t) =
∫ ∞

−∞
etxm(x) dx.

Then

τN =
1

N !

∫

∆(λ)2
N
∏

j=1

w(λj)dλ,

where ∆(λ) is the Vandermonde determinant,

∆(λ) = det(λk−1
j )1≤j,k≤N

and

w(x) = etxm(x).

20



Reduction to orthogonal polynomials

Consider monic polynomials Pn(x) = xn + . . . ,

orthogonal on the line with respect to the weight

w(x) = etxm(x), so that
∫ ∞

−∞
Pn(x)Pm(x)etxm(x)dx = hnδnm.

Then the Zinn-Justin formula implies that

τN =
N−1
∏

n=0

hn.
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The orthogonal polynomials satisfy the three

term recurrent relation,

xPn(x) = Pn+1(x) + QnPn(x) + RnPn−1(x),

where Rn can be found as Rn = hn
hn−1

, This

gives that hn = h0
∏n

j=1 Rj, where

h0 =

∫ ∞

−∞
etxm(x)dx =

sin(2γ)

sin(γ + t) sin(γ − t)
.

Thus,

τN = hN
0

N−1
∏

n=1

RN−n
n .
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Weight for the disordered phase region

Let

m(x) =
sinh(π

2 − γ)x

sinh πx
2

.

Then

φ(t) =

∫ ∞

−∞
etxm(x) dx,

hence the weight for the orthogonal polyno-

mials in the disordered phase region is

w(x) =
etx sinh(π

2 − γ)x

sinh πx
2

.
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The main technical result of our work with

Fokin is the asymptotics of Rn as n → ∞.

Theorem 5. (Asymptotics of the recurrent co-

efficient). As n → ∞,

Rn =
n2

γ2
[R + cos(nω)

∑

j: κj≤2

cjn
−κj

+ cn−2 + O(n−2−ε)], ε > 0,

where

R =





π

2cos πζ
2





2

, ζ ≡ t

γ
; ω = π(1 + ζ) ;

κj = 1 +
2j

π
2γ − 1

,

and cj, c are some explicit numbers.

The proof of the theorem is based on the ma-

trix Riemann-Hilbert problem for orthogonal

polynomials and nonlinear steepest descent method.
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Ferroelectric phase: Discrete orthog-

onal polynomials

Introduce discrete monic polynomials Pj(x) =

xj + . . . orthogonal on the set N = {1,2, . . .}
with respect to the weight,

w(l) = 2e−2tl sinh(2γl)

= e−2tl+2γl − e−2tl−2γl = ql − rl,

1 > q = e−2t+2γ > r = e−2t−2γ > 0.

so that

∞
∑

l=1

Pj(l)Pk(l)w(l) = hkδjk.

Then

τN = 2N2
N−1
∏

k=0

hk,
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Meixner Polynomials

For normalized Meixner polynomials we have

∞
∑

l=1

Qj(l)Qk(l)q
l = hQ

k δjk,

hQ
k =

(k!)2qk+1

(1 − q)2k+1
.

We prove the following asymptotics of hk.

Theorem 6. For any ε > 0, as k → ∞,

hk = hQ
k

(

1 + O(e−k1−ε
)

)

.

This implies the required asymptotics of ZN up

to a constant factor. To get the constant we

use the Toda equation for deformations of the

partition function and the asymptotics of ZN

as t → ∞.
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Critical Line between Ferroelectric

and Disordered Phase Regions

Partition function:

ZN =

(

b

c

)N2 N−1
∏

k=0

hk

(k!)2
, .

where
∫ ∞

0
Pj(x)Pk(x)w(x)dx = hkδjk ;

w(x) = e−x − e−rx,

r =
b

a
> 1.
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Our main technical result is the following asymp-

totics of hk.

Theorem 7. As k → ∞,

ln

[

hk

(k!)2

]

= −
ζ(3

2)

2
√

π(r − 1)k1/2
+

1

4k
+O(k−3/2).

To prove the theorem we use the Vanlessen’s

asymptotic formula. The main difficulty is that

w(z) = e−z − e−rz has zeros on the imagi-

nary axis. Under the scaling u = z
N the ze-

ros accumulates to the origin as N → ∞, and

the Vanlessen’s formula is not directly applica-

ble. We overcome this difficulty by introducing

an additional transformation of the undressed

Riemann-Hilbert problem (the second undress-

ing transformation). This enables us to justify

the Vanlessen’s asymptotic formula for hk and

to prove the theorem.
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Arctic circle theorem

Joint project with Ken McLaughlin

The arctic circle type theorem describes the

scaling limit of the phase separation under fixed

boundary conditions. It is proven for various

dimer models. Our goal is to prove the arctic

circle type theorem for the six-vertex model

with DWBC. Our approach is based on the

Riemann-Hilbert problem and the work of Colomo

and Pronko,

F. Colomo and A.G. Pronko, The arctic circle

revisited. Preprint. arXiv:0704.0362.
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We use the following coordinates on the lat-

tice: r = 1, . . . , N labels the vertical lines from

right to left; s = 1, . . . , N labels the horizontal

lines from top to bottom.

r r+1

s

The configurations contributing to the “empti-

ness formation probability” are those which are

consistent with the arrows shown.
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Main result

We consider the free fermion line, a2+b2 = c2.

Define the ellipse,

E =

{

(x, y) :

(

x − 1

2

)2

+

(

y − 1

2

)2

+ 2
τ − 1

τ + 1

(

x − 1

2

)(

y − 1

2

)

=
τ

(τ + 1)2

}

,

where τ = b2

a2 .

0

0.2

0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1

x

The ellipse E.
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Theorem 8. (Arctic circle type theorem.) If

(x, y) is in the right low region outside E then

FN(r, s) ≥ 1 − C1e−c1N , (r, s) = ([Nx], [Ny])

and if (x, y) is inside E then

FN(r, s) ≤ C2e−c2N2
.

This implies that the typical configurations are

frozen outside of E and unfrozen inside E.
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Conclusion

We proved some results about the large n asymp-

totic behavior of the partition function of the

six-vertex model with DWBC and the empti-

ness formation probability:

• We proved the Zinn-Justin conjecture on

the large N asymptotic behavior of the par-

tition function in the disordered phase re-

gion,

ZN = CNκeN2F
(

1 + O(N−ε)
)

,

and we found the explicit value of the ex-

ponent κ,

κ =
1

12
− 2γ2

3π(π − 2γ)
.
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• In the ferroelectric phase region we proved

the asymptotic formula,

ZN = CGNFN2
[

1 + O

(

e−N1−ε
)]

,

where C = 1 − e−4γ, G = eγ−t, and F =

sinh(t + γ).

• On the critical line between disordered and

ferroelectric phase regions we proved the

asymptotic formula,

ZN = CNκG
√

NFN2
[1 + O(N−1/2)] ,

where C > 0, κ = 1
4 , and

G = exp

[

−ζ

(

3

2

)√

a

π

]

, F = b .

• On the free fermion line we evaluated the

emptiness formation probability and we ob-

tained a proof of the arctic circle phenomenon.

34


