Scaling function of the 2D Ising model in a magnetic field

Murray Batchelor

> Department of Theoretical Physics and Mathematical Sciences Institute

> Australian National University

Rutgers, December 13, 2008
[V. Mangazeev, M. Batchelor, V. Bazhanov and M. Dudalev] arXiv:0811.3271, J. Phys. A: Math. and Theor. FTC, in press

Outline

- 2D lattice Ising model, scaling theory
- 2D Ising field theory, scaling function
- Variational corner-transfer matrix method
- Short review of exact and known results
- Scaling function from lattice calculations

Ising model on the square lattice

$$
\begin{aligned}
& Z=\sum_{\sigma} \exp \left\{\beta \sum_{\langle i j\rangle} \sigma_{i} \sigma_{j}+H \sum_{i} \sigma_{i}\right\}, \quad \sigma_{i}= \pm 1 \\
& F=-\lim _{N \rightarrow \infty} \frac{1}{N} \log Z, \quad M=-\frac{\partial F}{\partial H}, \quad \chi=-\frac{\partial^{2} F}{\partial H^{2}}
\end{aligned}
$$

2nd order transition at $H=0, \beta=\frac{1}{2} \log (1+\sqrt{2})=0.44068679 \ldots$ $H=0$ is exactly solvable (L. Onsager, 1944)
Scaling theory predictions (A. Aharony, M. Fisher (1980), ...)

$$
\begin{gathered}
F_{\text {sing }}(\tau, H)=\mathcal{F}(m, h), \quad \tau=\frac{1}{2}\left[\frac{1}{\sinh (2 \beta)}-\sinh (2 \beta)\right], \quad \tau \rightarrow 0, \quad H \rightarrow 0 \\
m=m(\tau, H)=-\sqrt{2} \tau+O\left(\tau^{3}, H^{2}\right), \quad h=h(\tau, H)=C_{h} H+H O\left(\tau, H^{2}\right) \\
\mathcal{F}(m, h)=\frac{m^{2}}{8 \pi} \log m^{2}+h^{16 / 15} \Phi(\eta), \quad \eta=\frac{m}{h^{8 / 15}}
\end{gathered}
$$

2D Ising field theory

The action

$$
\mathcal{A}_{\mathrm{IFT}}=\mathcal{A}_{(c=1 / 2)}+\frac{m}{2 \pi} \int \epsilon(x) d^{2} x+h \int \sigma(x) d^{2} x
$$

$h=0$ corresponds to free-fermions and $m=0$ leads to
Zamolodchikov's integrable E_{8} theory
The vacuum energy density

$$
\mathcal{F}(m, h)=\frac{m^{2}}{8 \pi} \log m^{2}+h^{16 / 15} \Phi(\eta), \quad \eta=\frac{m}{h^{8 / 15}}
$$

$\Phi(\eta)$ and its analytical properties were studied by Fonseca \& Zamolodchikov (2001) using "Truncated Free-Fermion Space Approach" (TFFSA) and high- and low-T dispersion relations.

Numerical algorithm based on the corner-transfer matrix method

- The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

Numerical algorithm based on the corner-transfer matrix method

- The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

Numerical algorithm based on the corner-transfer matrix method

- The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

Numerical algorithm based on the corner-transfer matrix method

- The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

Numerical algorithm based on the corner-transfer matrix method

- The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

Numerical algorithm based on the corner-transfer matrix method

- The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

Numerical algorithm based on the corner-transfer matrix method

- The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

Numerical algorithm based on the corner-transfer matrix method

- The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

$$
\mathbf{I}, \mathbf{J}=\{ \pm, \ldots, \pm\}=1, \ldots, 2^{N-1}
$$

Numerical algorithm based on the corner-transfer matrix method

- The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

$$
\mathbf{I}, \mathbf{J}=\{ \pm, \ldots, \pm\}=1, \ldots, 2^{N-1}
$$

Numerical algorithm based on the corner-transfer matrix method

- The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

$$
\mathbf{I}, \mathbf{J}=\{ \pm, \ldots, \pm\}=1, \ldots, 2^{N-1}
$$

Numerical algorithm based on the corner-transfer matrix method

- The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

$$
\mathbf{I}, \mathbf{J}=\{ \pm, \ldots, \pm\}=1, \ldots, 2^{N-1}
$$

Numerical algorithm based on the corner-transfer matrix method

- The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

$$
\mathbf{I}, \mathbf{J}=\{ \pm, \ldots, \pm\}=1, \ldots, 2^{N-1}
$$

Numerical algorithm based on the corner-transfer matrix method

- The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

$$
\mathbf{I}, \mathbf{J}=\{ \pm, \ldots, \pm\}=1, \ldots, 2^{N-1}
$$

Numerical algorithm based on the corner-transfer matrix method

- The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

$$
\mathbf{I}, \mathbf{J}=\{ \pm, \ldots, \pm\}=1, \ldots, 2^{N-1}
$$

Numerical algorithm based on the corner-transfer matrix method

- The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

$$
\mathbf{I}, \mathbf{J}=\{ \pm, \ldots, \pm\}=1, \ldots, 2^{N-1}
$$

Numerical algorithm based on the corner-transfer matrix method

- The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

$$
\mathbf{I}, \mathbf{J}=\{ \pm, \ldots, \pm\}=1, \ldots, 2^{N-1}
$$

$$
\begin{aligned}
& \mathbf{Z}=\sum_{\alpha} A[\alpha]_{I J} A[\alpha]_{J K} A[\alpha]_{K L} A[\alpha]_{L I}= \\
& =\sum_{\alpha} \operatorname{Tr}\left(A[\alpha]^{4}\right)
\end{aligned}
$$

- The dimension of A is huge: for $N=20, \operatorname{dim}(A)=524388$.
- The spectrum of A exponentially decays away from the critical temperature T_{c}.
- Even when $T=0.99 T_{c}$, the largest 100-200 eigenvalues of A are enough to calculate physical quantities with 10^{-20} accuracy.
- We take a small size system, diagonalize A and keep only M (≈ 100) eigenvalues. We increase $N \rightarrow N+1$, construct a new A and keep M eigenvalues.
- The size of the system becomes the number of iterations and can be as large as we wish.
- No extrapolation is needed. When the matrix A stabilizes (normally 200-300 iterations for $15-20$ correct digital places), we get the physical quantities at $N \rightarrow \infty$.

Renormalization group scaling

$$
F(\tau, H)=F_{r e g}(\tau, H)+F_{\text {sing }}\left(u_{1}, u_{2}, \ldots\right)
$$

$u_{j}(\tau, H)$ - nonlinear scaling fields analytic in τ, H.

$$
F_{\text {sing }}\left(u_{1}, u_{2}, \ldots\right)=b^{-d} F_{\text {sing }}\left(b^{y_{1}} u_{1}, b^{y_{2}} u_{2}, \ldots\right)
$$

$y_{i}>0$ - relevant fields, $y_{i}<0$ - irrelevant fields
Ising model
$u_{1}=m, u_{2}=h, y_{1}=1, y_{2}=15 / 8, d=2, y_{i}<0, i>2$
$F_{\text {sing }}\left(u_{1}, u_{2}, \ldots\right)=m^{2} F_{\text {sing }}\left(\pm, \frac{h}{|m|^{15 / 8}}, u_{3}|m|^{\left|y_{3}\right|}, \ldots\right) \approx m^{2} F_{\text {sing }}^{ \pm}\left(\frac{h}{|m|^{15 / 8}}\right)$
$F_{\text {sing }}\left(u_{1}, u_{2}, ..\right)=h^{16 / 15} F_{\text {sing }}\left(\frac{m}{h^{8 / 15}}, 1, u_{3} h^{\frac{8\left|y_{3}\right|}{15}}, ..\right) \approx h^{16 / 15} \Phi\left(\frac{m}{h^{8 / 15}}\right)$

+ log corrections

More detailed structure

We know the leading log term from the Ising solution

$$
\begin{gathered}
\mathcal{F}(m, h)=\frac{m^{2}}{8 \pi} \log m^{2}+\left\{\begin{array}{ll}
m^{2} G_{h i g h}(\xi), & m<0 \\
m^{2} G_{\text {low }}(\xi), & m>0
\end{array}, \quad \xi=h /|m|^{15 / 8}\right. \\
\mathcal{F}(m, 0)=\frac{m^{2}}{8 \pi} \log m^{2}, \quad G_{h i g h}(0)=G_{\text {low }}(0)=0
\end{gathered}
$$

They can be expanded in ξ (Fonseca \& Zamolodchikov)

$$
\begin{aligned}
G_{\text {high }}(\xi) & =G_{2} \xi^{2}+G_{4} \xi^{4}+G_{6} \xi^{6}+\ldots \\
G_{\text {low }}(\xi) & =\tilde{G}_{1} \xi+\tilde{G}_{2} \xi^{2}+\tilde{G}_{3} \xi^{3}+\ldots
\end{aligned}
$$

The expansion of $\Phi(\eta)$

$$
\Phi(\eta)=-\frac{\eta^{2}}{8 \pi} \log \eta^{2}+\sum_{k=0}^{\infty} \Phi_{k} \eta^{k}
$$

More detailed structure

$$
\tilde{G}_{1}=-2^{1 / 12} e^{-1 / 8} \mathcal{A}^{3 / 2}=-1.357838341706595 \ldots
$$

The coefficients G_{2} and \tilde{G}_{2} have integral expressions (BMW, TM) involving solutions of the Painlevé III (V) equation. They were numerically evaluated to very high precision (50 digits) in (ONGP)

$$
G_{2}=-1.845228078232838 \ldots, \quad \tilde{G}_{2}=-0.0489532897203 \ldots
$$

The coefficient Φ_{0} was calculated by Fateev

$$
\Phi_{0}=-\frac{(2 \pi)^{\frac{1}{15}} \gamma\left(\frac{1}{3}\right) \gamma\left(\frac{1}{5}\right) \gamma\left(\frac{7}{15}\right)}{\left[\gamma\left(\frac{1}{4}\right) \gamma^{2}\left(\frac{3}{16}\right)\right]^{\frac{8}{15}}}=-1.19773338379799 \ldots, \quad \gamma(x)=\frac{\Gamma(x)}{\Gamma(1-x)}
$$

The coefficient Φ_{1} has an explicit integral representation, obtained in (FLZ ${ }^{2}$). We have evaluated the required integral explicitly

$$
\boldsymbol{\Phi}_{1}=-\frac{32 \cdot 2^{\frac{3}{4}}}{225(2 \pi)^{\frac{7}{15}}} \frac{\gamma\left(\frac{1}{3}\right) \gamma\left(\frac{1}{8}\right) \prod_{k=3}^{7} \gamma\left(\frac{k}{15}\right)}{\left[\gamma\left(\frac{1}{4}\right) \gamma^{2}\left(\frac{3}{16}\right)\right]^{\frac{19}{15}}}=-0.3188101248906 \ldots
$$

Lattice calculations

Using the CTM method we calculated ≈ 10000 high precision data points for the free energy, magnetization and internal energy in the range $10^{-7}<H<10^{-2}$ and $0.9 \beta_{c}<\beta<1.1 \beta_{c}$. Lattice free energy

$$
F(\tau, H)=F_{\text {sing }}(\tau, H)+F_{\text {reg }}(\tau, H)+F_{\text {sub }}(\tau, H), \quad \tau, H \rightarrow 0
$$

$$
F_{\text {sing }}(\tau, H)=\frac{m^{2}}{8 \pi} \log m^{2}+h^{16 / 15} \Phi\left(\frac{m}{h^{8 / 15}}\right), \quad F_{\text {reg }}(\tau, H)=A(\tau)+H^{2} B(\tau)+O\left(H^{4}\right)
$$

$$
\begin{aligned}
m(\tau, H) & =-\sqrt{2} \tau a(\tau)+H^{2} b(\tau)+O\left(H^{4}\right) \\
h(\tau, H) & =C_{h} H\left[c(\tau)+H^{2} d(\tau)+O\left(H^{4}\right)\right]
\end{aligned}
$$

$$
\Phi(\eta)=-\frac{\eta^{2}}{8 \pi} \log \eta^{2}+\sum_{k=0}^{\infty} \Phi_{k} \eta^{k}
$$

$\Phi_{\text {low }}(\eta)=\tilde{G}_{1} \eta^{\frac{1}{8}}+\tilde{G}_{2} \eta^{-\frac{7}{4}}+\tilde{G}_{3} \eta^{-\frac{29}{8}}+\ldots \quad$ for real $\eta \rightarrow+\infty$
$\Phi_{\text {high }}(\eta)=G_{2}(-\eta)^{-\frac{7}{4}}+G_{4}(-\eta)^{-\frac{22}{4}}+G_{6}(-\eta)^{-\frac{37}{4}}+\ldots$ for real $\eta \rightarrow-\infty$

Lattice calculations

Onsager's solution:

$$
F(\tau, 0)=\log \sqrt{2} \cosh (2 \beta)+\int_{0}^{\pi} \frac{d \theta}{2 \pi} \log \left[1+\left(1-\frac{\cos ^{2} \theta}{1+\tau^{2}}\right)^{1 / 2}\right]
$$

$$
a(\tau)=1-\frac{3 \tau^{2}}{16}+\frac{137 \tau^{4}}{1536}+O\left(\tau^{6}\right)
$$

$$
A(\tau)=-\frac{2 \mathcal{G}}{\pi}-\frac{\log 2}{2}+\frac{\tau}{2}-\frac{\tau^{2}(1+5 \log 2)}{4 \pi}-\frac{\tau^{3}}{12}+\frac{5 \tau^{4}(1+6 \log 2)}{64 \pi}+O\left(\tau^{5}\right)
$$

Magnetization:

$$
\begin{array}{r}
M(\tau, 0)=\left(1-k(\tau)^{2}\right)^{1 / 8}, \quad \tau<0, \quad k=k(\tau)=\left(\sqrt{1+\tau^{2}}+\tau\right)^{2} \\
c(\tau)=1+\frac{\tau}{4}+\frac{15 \tau^{2}}{128}-\frac{9 \tau^{3}}{512}-\frac{4333 \tau^{4}}{98304}+O\left(\tau^{5}\right)
\end{array}
$$

Susceptibility

Susceptibility (Orrick, Nickel, Guttmann, Perk (2001)):

$$
\begin{aligned}
\begin{aligned}
& \chi(\tau)_{\mathrm{ONGP}}=-2^{-\frac{7}{8}} C_{h}^{2} G^{\prime \prime}(0)|\tau|^{-\frac{7}{4}}\left(1+\frac{\tau}{2}+\frac{5 \tau^{2}}{8}+\frac{3 \tau^{3}}{16}-\frac{23 \tau^{4}}{384}+O\left(\tau^{5}\right)\right) \\
&+e(\tau)+f(\tau) \log |\tau|+O\left(\tau^{3} \log |\tau|\right) \\
& \chi(\tau)=-2^{-\frac{7}{8}} C_{h}^{2} G^{\prime \prime}(0)|\tau|^{-\frac{7}{4}} a(\tau)^{-\frac{7}{4}} c(\tau)^{2}-\left.\frac{\partial^{2} F_{\text {sub }}(\tau, H)}{\partial H^{2}}\right|_{H=0} \\
&-2 B(\tau)+\frac{\tau a(\tau) b(\tau)}{\sqrt{2} \pi}\left(1+\log \left(2 \tau^{2} a(\tau)\right)\right) \\
& B(\tau)=0.0520666225469+0.0769120341893 \tau+0.0360200462309 \tau^{2}+O\left(\tau^{3}\right) \\
& b(\tau)= \mu_{h}\left(1+\frac{\tau}{2}+O\left(\tau^{2}\right)\right), \quad \mu_{h}=0.071868670814 \\
&\left.\left(2^{-\frac{7}{8}} C_{h}^{2} G^{\prime \prime}(0)\right)^{-1} \frac{\partial^{2} F_{\text {sub }}(\tau, H)}{\partial H^{2}}\right|_{H=0}=-\frac{1}{384}|\tau|^{\frac{9}{4}}+\ldots
\end{aligned}
\end{aligned}
$$

Scaling Function for the 2D Ising model in a magnetic field

Data for the function $\Phi(\eta)$

	CTM (This work)	TFFSA	Ext. DR	Other
Φ_{0}	$-1.197733383797993(1)$	-1.1977331	-1.1977320	$-1.197733383797993 .$.
Φ_{1}	$-0.318810124891(1)$	-0.3188103	-0.3188192	$-0.3188101248906 \ldots$
Φ_{2}	$0.110886196683(2)$	0.1108867	0.1108915	-
Φ_{3}	$0.01642689465(2)$	0.0164266	0.0164252	-
Φ_{4}	$-2.639978(1) \times 10^{-4}$	-2.64×10^{-4}	-2.64×10^{-4}	-
Φ_{5}	$-5.140526(1) \times 10^{-4}$	-5.14×10^{-4}	-5.14×10^{-4}	-
Φ_{6}	$2.08865(1) \times 10^{-4}$	2.07×10^{-4}	2.09×10^{-4}	-
Φ_{7}	$-4.4819(1) \times 10^{-5}$	-4.52×10^{-5}	-4.48×10^{-5}	-

Data for the function $\Phi(\eta)$

	CTM (This work)	Low- T DR	From References
\tilde{G}_{1}	$-1.3578383417066(1)$	-1.35783835	$-1.357838341706595 \ldots \mathrm{MW}$
\tilde{G}_{2}	$-0.048953289720(1)$	-0.0489589	$-0.0489532897203 \ldots \mathrm{BMW}, \mathrm{TM}, \mathrm{ONGP}$
\tilde{G}_{3}	$0.038863932(3)$	0.0388954	$0.0387529 ; \mathrm{MW} \quad 0.039(1)$ ZLF
\tilde{G}_{4}	$-0.068362119(2)$	-0.0685060	$-0.0685535 \mathrm{MW} ;-0.0685(2)$ ZLF
\tilde{G}_{5}	$0.18388370(1)$	0.18453	-
\tilde{G}_{6}	$-0.6591714(1)$	-0.66215	-
\tilde{G}_{7}	$2.937665(3)$	2.952	-
\tilde{G}_{8}	$-15.61(1)$	-15.69	-

	CTM (This work)	High-T DR (FZ)	From References	
G_{2}	$-1.8452280782328(2)$	-1.8452283	$-1.845228078232838 \ldots$	(BMW,TM)
G_{4}	$8.333711750(5)$	8.33410	$8.33370(1)$	(CHPV)
G_{6}	$-95.16896(1)$	-95.1884	$-95.1689(4)$	(CHPV)
G_{8}	$1457.62(3)$	1458.21	$1457.55(11)$	(CHPV)
G_{10}	$-25891(2)$	-25889	$-25884(13)$	(CHPV)

Conclusion

- The numerical corner-transfer matrix algorithm demonstrates remarkable power for the 2D lattice Ising model.
- Among other results we showed excellent agreement with the field theory predictions by Fonseca \& Zamolodchikov for the scaling function.
- The CTM method can be naturally formulated for any statistical lattice system including vertex models in 2D and 3 D , and thus $(1+1) \mathrm{D}$ and $(2+1) \mathrm{D}$ quantum systems.
- We have implemented fast parallelized codes running on various computers. For example, CPU time for the Ising model calculations was about 9000 hours (1 CPU equivalent) with parallelization level of 15-50 CPU's.
- We aim to apply it to a range of statistical mechanics problems - self-avoiding polygons, 3D Ising model, etc.

