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Ising model on the square lattice

Z =
∑

σ

exp
{
β
∑
〈ij〉

σiσj + H
∑

i

σi

}
, σi = ±1

F = − lim
N→∞

1

N
log Z , M = − ∂F

∂H
, χ = − ∂

2F

∂H2

2nd order transition at H = 0, β = 1
2 log(1 +

√
2) = 0.44068679 . . .

H = 0 is exactly solvable (L. Onsager, 1944)
Scaling theory predictions (A. Aharony, M. Fisher (1980), ...)

Fsing (τ,H) = F(m, h), τ =
1

2

[ 1

sinh(2β)
− sinh(2β)

]
, τ → 0, H → 0

m = m(τ,H) = −
√

2 τ+O(τ 3,H2), h = h(τ,H) = Ch H + H O(τ,H2)

F(m, h) = m2

8π log m2 + h16/15 Φ(η), η = m
h8/15
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2D Ising field theory

The action

AIFT = A(c=1/2) +
m

2π

∫
ε(x) d2x + h

∫
σ(x) d2x

h = 0 corresponds to free-fermions and m = 0 leads to
Zamolodchikov’s integrable E8 theory
The vacuum energy density

F(m, h) =
m2

8π
log m2 + h16/15 Φ(η), η =

m

h8/15

Φ(η) and its analytical properties were studied by Fonseca &
Zamolodchikov (2001) using “Truncated Free-Fermion Space
Approach” (TFFSA) and high- and low-T dispersion relations.
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Numerical algorithm based on the corner-transfer matrix method

The corner transfer-matrix variational method
(R. Baxter, 1968, 1976)
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Numerical algorithm based on the corner-transfer matrix method

The corner transfer-matrix variational method
(R. Baxter, 1968, 1976)

I,J={±, . . . ,±} = 1, . . . , 2N−1

I

J

Α

A@ΑDIJ
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The dimension of A is huge: for N = 20, dim(A) = 524388.

The spectrum of A exponentially decays away from the critical
temperature Tc .

Even when T = 0.99Tc , the largest 100-200 eigenvalues of A are
enough to calculate physical quantities with 10−20 accuracy.

We take a small size system, diagonalize A and keep only M
(≈ 100) eigenvalues. We increase N → N + 1, construct a new A
and keep M eigenvalues.

The size of the system becomes the number of iterations and can be
as large as we wish.

No extrapolation is needed. When the matrix A stabilizes (normally

200-300 iterations for 15− 20 correct digital places), we get the

physical quantities at N →∞.
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Renormalization group scaling

F (τ,H) = Freg (τ,H) + Fsing (u1, u2, . . .)

uj(τ,H) - nonlinear scaling fields analytic in τ,H.

Fsing (u1, u2, . . .) = b−dFsing (by1u1, b
y2u2, . . .)

yi > 0 - relevant fields, yi < 0 - irrelevant fields

Ising model
u1 = m, u2 = h, y1 = 1, y2 = 15/8, d = 2, yi < 0, i > 2

Fsing (u1, u2, . . .) = m2Fsing (±, h

|m|15/8
, u3|m||y3|, . . .) ≈ m2F±sing (

h

|m|15/8
)

Fsing (u1, u2, ..) = h16/15Fsing (
m

h8/15
, 1, u3h

8|y3|
15 , ..) ≈ h16/15Φ(

m

h8/15
)

+ log corrections
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More detailed structure

We know the leading log term from the Ising solution

F(m, h) =
m2

8π
log m2+

{
m2 Ghigh(ξ), m < 0
m2 Glow (ξ), m > 0

, ξ = h/|m|15/8

F(m, 0) =
m2

8π
log m2, Ghigh(0) = Glow (0) = 0

They can be expanded in ξ (Fonseca & Zamolodchikov)

Ghigh(ξ) = G2ξ
2 + G4ξ

4 + G6ξ
6 + . . .

Glow (ξ) = G̃1ξ + G̃2ξ
2 + G̃3ξ

3 + . . .

The expansion of Φ(η)

Φ(η) = − η
2

8π
log η2 +

∞∑
k=0

Φkη
k
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More detailed structure

G̃1 = −21/12 e−1/8A3/2 = −1.357838341706595 . . .

The coefficients G2 and G̃2 have integral expressions (BMW, TM) involving
solutions of the Painlevé III (V) equation. They were numerically evaluated to
very high precision (50 digits) in (ONGP)

G2 = −1.845228078232838 . . . , G̃2 = −0.0489532897203 . . .

The coefficient Φ0 was calculated by Fateev

Φ0 = −
(2π)

1
15 γ( 1

3
)γ( 1

5
)γ( 7

15
)ˆ

γ( 1
4
)γ2( 3

16
)
˜ 8

15

= −1.19773338379799 . . . , γ(x) =
Γ(x)

Γ(1− x)

The coefficient Φ1 has an explicit integral representation, obtained in (FLZ2).
We have evaluated the required integral explicitly

Φ1 = − 32 · 2
3
4

225 (2π)
7

15

γ( 1
3
)γ( 1

8
)

7Q
k=3

γ( k
15

)ˆ
γ( 1

4
)γ2( 3

16
)
˜ 19

15

= −0.3188101248906 . . .
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Lattice calculations

Using the CTM method we calculated ≈ 10000 high precision data points for

the free energy, magnetization and internal energy in the range

10−7 < H < 10−2 and 0.9βc < β < 1.1βc . Lattice free energy

F (τ,H) = Fsing (τ,H) + Freg (τ,H) + Fsub(τ,H), τ,H → 0

Fsing (τ,H) = m2

8π
log m2 + h16/15 Φ( m

h8/15 ), Freg (τ,H) = A(τ) + H2 B(τ) + O(H4)

m(τ,H) = −
√

2τa(τ) + H2 b(τ) + O(H4)

h(τ,H) = ChH
h
c(τ) + H2 d(τ) + O(H4)

i
Φ(η) = − η

2

8π
log η2 +

∞X
k=0

Φkη
k

Φlow (η) = G̃1η
1
8 + G̃2η

− 7
4 + G̃3η

− 29
8 + . . . for real η → +∞

Φhigh(η) = G2(−η)−
7
4 + G4(−η)−

22
4 + G6(−η)−

37
4 + . . . for real η → −∞
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Lattice calculations

Onsager’s solution:

F (τ, 0) = log
√

2 cosh(2β) +
∫ π

0
dθ
2π log

[
1 +

(
1− cos2 θ

1+τ2

)1/2]
a(τ) = 1− 3τ2

16
+ 137τ4

1536
+ O(τ 6)

A(τ) = −2G
π −

log 2
2 + τ

2 −
τ 2(1 + 5 log 2)

4π − τ 3

12 +
5τ 4(1 + 6 log 2)

64π + O(τ 5)

Magnetization:

M(τ, 0) = (1− k(τ)2)1/8, τ < 0, k = k(τ) = (
√

1 + τ 2 + τ)2

c(τ) = 1 +
τ

4
+

15τ 2

128
− 9τ 3

512
− 4333τ 4

98304
+ O(τ 5)
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Susceptibility

Susceptibility (Orrick, Nickel, Guttmann, Perk (2001)):

χ(τ)ONGP = −2−
7
8 C 2

h G ′′(0) |τ |−
7
4

“
1 +

τ

2
+

5τ 2

8
+

3τ 3

16
− 23τ 4

384
+ O(τ 5)

”
+e(τ) + f (τ) log |τ |+ O(τ 3 log |τ |)

χ(τ) = −2−
7
8 C 2

h G ′′(0) |τ |−
7
4 a(τ)−

7
4 c(τ)2 − ∂2Fsub(τ,H)

∂H2

˛̨̨
H=0

−2B(τ) +
τ a(τ) b(τ)√

2π

“
1 + log

`
2τ 2a(τ)

´”
B(τ) = 0.0520666225469 + 0.0769120341893 τ + 0.0360200462309 τ2 + O(τ3)

b(τ) = µh

“
1 +

τ

2
+ O(τ2)

”
, µh = 0.071868670814

“
2−

7
8 C 2

h G ′′(0)
”−1 ∂2Fsub(τ,H)

∂H2

˛̨̨
H=0

= − 1

384
|τ |

9
4 + . . .
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Scaling Function for the 2D Ising model in a magnetic field
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Data for the function Φ(η)

CTM (This work) TFFSA Ext. DR Other

Φ0 −1.197733383797993(1) −1.1977331 −1.1977320 −1.197733383797993..
Φ1 −0.318810124891(1) −0.3188103 −0.3188192 −0.3188101248906...
Φ2 0.110886196683(2) 0.1108867 0.1108915 —
Φ3 0.01642689465(2) 0.0164266 0.0164252 —
Φ4 −2.639978(1)× 10−4 −2.64× 10−4 −2.64× 10−4 —
Φ5 −5.140526(1)× 10−4 −5.14× 10−4 −5.14× 10−4 —
Φ6 2.08865(1)× 10−4 2.07× 10−4 2.09× 10−4 —
Φ7 −4.4819(1)× 10−5 −4.52× 10−5 −4.48× 10−5 —
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Data for the function Φ(η)

CTM (This work) Low-T DR From References

G̃1 −1.3578383417066(1) −1.35783835 −1.357838341706595... MW

G̃2 −0.048953289720(1) −0.0489589 −0.0489532897203... BMW,TM,ONGP

G̃3 0.038863932(3) 0.0388954 0.0387529 ;MW 0.039(1) ZLF

G̃4 −0.068362119(2) −0.0685060 −0.0685535 MW; −0.0685(2) ZLF

G̃5 0.18388370(1) 0.18453 —

G̃6 −0.6591714(1) −0.66215 —

G̃7 2.937665(3) 2.952 —

G̃8 −15.61(1) −15.69 —

CTM (This work) High-T DR (FZ) From References

G2 −1.8452280782328(2) −1.8452283 −1.845228078232838... (BMW,TM)
G4 8.333711750(5) 8.33410 8.33370(1) (CHPV)
G6 −95.16896(1) −95.1884 −95.1689(4) (CHPV)
G8 1457.62(3) 1458.21 1457.55(11) (CHPV)
G10 −25891(2) −25889 −25884(13) (CHPV)
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Conclusion

The numerical corner-transfer matrix algorithm demonstrates
remarkable power for the 2D lattice Ising model.

Among other results we showed excellent agreement with the
field theory predictions by Fonseca & Zamolodchikov for the
scaling function.

The CTM method can be naturally formulated for any
statistical lattice system including vertex models in 2D and
3D, and thus (1+1)D and (2+1)D quantum systems.

We have implemented fast parallelized codes running on
various computers. For example, CPU time for the Ising
model calculations was about 9000 hours (1 CPU equivalent)
with parallelization level of 15-50 CPU’s.

We aim to apply it to a range of statistical mechanics
problems – self-avoiding polygons, 3D Ising model, etc.


	Preliminaries
	Ising model on the square lattice
	Ising field theory

	Variational CTM method
	Renormalization group scaling
	Renormalization group scaling

	Lattice calculations
	Lattice calculations

	Conclusion

