Preliminaries

Renormalization group scaling 000

Lattice calculations

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Conclusion

Scaling function of the 2D Ising model in a magnetic field

Murray Batchelor

Department of Theoretical Physics and Mathematical Sciences Institute Australian National University

Rutgers, December 13, 2008

[V. Mangazeev, M. Batchelor, V. Bazhanov and M. Dudalev]

arXiv:0811.3271, J. Phys. A: Math. and Theor. FTC, in press

Preliminaries 00	Variational CTM method	Renormalization group scaling	Lattice calculations	Conclusion
Outline				

- 2D lattice Ising model, scaling theory
- 2D Ising field theory, scaling function
- Variational corner-transfer matrix method
- Short review of exact and known results
- Scaling function from lattice calculations

Preliminaries	Variational CTM method	Renormalization group scaling	Lattice calculations	Conclusion
0				

Ising model on the square lattice

$$Z = \sum_{\sigma} \exp\left\{\beta \sum_{\langle ij \rangle} \sigma_i \sigma_j + H \sum_i \sigma_i\right\}, \qquad \sigma_i = \pm 1$$
$$F = -\lim_{N \to \infty} \frac{1}{N} \log Z, \qquad M = -\frac{\partial F}{\partial H}, \qquad \chi = -\frac{\partial^2 F}{\partial H^2}$$

2nd order transition at H = 0, $\beta = \frac{1}{2}\log(1 + \sqrt{2}) = 0.44068679...$ H = 0 is exactly solvable (L. Onsager, 1944) Scaling theory predictions (A. Aharony, M. Fisher (1980), ...)

$$F_{sing}(\tau, H) = \mathcal{F}(m, h), \quad \tau = \frac{1}{2} \Big[\frac{1}{\sinh(2\beta)} - \sinh(2\beta) \Big], \quad \tau \to 0, \quad H \to 0$$

$$m = m(\tau, H) = -\sqrt{2} \tau + O(\tau^3, H^2), \quad h = h(\tau, H) = C_h H + H O(\tau, H^2)$$

$$\mathcal{F}(m,h) = \frac{m^2}{8\pi} \log m^2 + h^{16/15} \Phi(\eta), \qquad \eta = \frac{m}{h^{8/15}}$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Preliminaries ○●	Variational CTM method	Renormalization group scaling	Lattice calculations	Conclusion
2D Ising fi	eld theory			

The action

$$\mathcal{A}_{\rm IFT} = \mathcal{A}_{(c=1/2)} + \frac{m}{2\pi} \int \epsilon(x) d^2x + h \int \sigma(x) d^2x$$

h = 0 corresponds to free-fermions and m = 0 leads to Zamolodchikov's integrable E_8 theory The vacuum energy density

$$\mathcal{F}(m,h) = rac{m^2}{8\pi} \log m^2 + h^{16/15} \, \Phi(\eta), \qquad \eta = rac{m}{h^{8/15}}$$

 $\Phi(\eta)$ and its analytical properties were studied by Fonseca & Zamolodchikov (2001) using "Truncated Free-Fermion Space Approach" (TFFSA) and high- and low-T dispersion relations.

Preliminaries 00	Variational CTM method	Renormalization group scaling	Lattice calculations	Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Numerical algorithm based on the corner-transfer matrix method

Preliminaries	Variational CTM method	Renormalization group scaling	Lattice calculations	Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Numerical algorithm based on the corner-transfer matrix method

Preliminaries 00	Variational CTM method	Renormalization group scaling	Lattice calculations	Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Numerical algorithm based on the corner-transfer matrix method

Preliminaries 00	Variational CTM method	Renormalization group scaling	Lattice calculations	Conclusion

Preliminaries 00	Variational CTM method	Renormalization group scaling	Lattice calculations	Conclusion

• The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

Preliminaries 00	Variational CTM method	Renormalization group scaling	Lattice calculations	Conclusion

• The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

Preliminaries 00	Variational CTM method	Renormalization group scaling	Lattice calculations	Conclusion

• The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

Preliminaries	Variational CTM method	Renormalization group scaling	Lattice calculations	Conclusion

Preliminaries 00	Variational CTM method	Renormalization group scaling	Lattice calculations	Conclusion

• The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

Preliminaries 00	Variational CTM method	Renormalization group scaling	Lattice calculations	Conclusion

• The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

Preliminaries 00	Variational CTM method	Renormalization group scaling	Lattice calculations	Conclusion

• The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

Preliminaries	Variational CTM method	Renormalization group scaling	Lattice calculations	Conclusion

• The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

Preliminaries	Variational CTM method	Renormalization group scaling	Lattice calculations	Conclusion

• The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

Preliminaries 00	Variational CTM method	Renormalization group scaling	Lattice calculations	Conclusion

• The corner transfer-matrix variational method (R. Baxter, 1968, 1976)

I,J=
$$\{\pm, \dots, \pm\} = 1, \dots, 2^{N-1}$$

Preliminaries 00	Variational CTM method	Renormalization group scaling	Lattice calculations	Conclusion

- The dimension of A is huge: for N = 20, dim(A) = 524388.
- The spectrum of A exponentially decays away from the critical temperature T_c .
- Even when $T = 0.99 T_c$, the largest 100-200 eigenvalues of A are enough to calculate physical quantities with 10^{-20} accuracy.
- We take a small size system, diagonalize A and keep only M (≈ 100) eigenvalues. We increase $N \rightarrow N + 1$, construct a new A and keep M eigenvalues.
- The size of the system becomes the number of iterations and can be as large as we wish.
- No extrapolation is needed. When the matrix A stabilizes (normally 200-300 iterations for 15 20 correct digital places), we get the physical quantities at $N \rightarrow \infty$.

Preliminaries 00	Variational CTM method	Renormalization group scaling ●00	Lattice calculations	Conclusion
Renorma	alization group	scaling		

$$F(\tau, H) = F_{reg}(\tau, H) + F_{sing}(u_1, u_2, \ldots)$$

 $u_j(\tau, H)$ - nonlinear scaling fields analytic in τ, H .

$$F_{sing}(u_1, u_2, \ldots) = b^{-d} F_{sing}(b^{y_1}u_1, b^{y_2}u_2, \ldots)$$

 $y_i > 0$ - relevant fields, $y_i < 0$ - irrelevant fields

Ising model $u_1 = m, u_2 = h, y_1 = 1, y_2 = 15/8, d = 2, y_i < 0, i > 2$

$$F_{sing}(u_1, u_2, \ldots) = m^2 F_{sing}(\pm, \frac{h}{|m|^{15/8}}, u_3|m|^{|y_3|}, \ldots) \approx m^2 F_{sing}^{\pm}(\frac{h}{|m|^{15/8}})$$

$$F_{sing}(u_1, u_2, ..) = h^{16/15} F_{sing}(\frac{m}{h^{8/15}}, 1, u_3 h^{\frac{8|y_3|}{15}}, ..) \approx h^{16/15} \Phi(\frac{m}{h^{8/15}})$$

+ log corrections

Preliminaries 00	Variational CTM method	Renormalization group scaling 000	Lattice calculations	Conclusion
More de	tailed structure			

We know the leading log term from the Ising solution

$$\mathcal{F}(m,h) = rac{m^2}{8\pi} \log m^2 + \left\{ egin{array}{cc} m^2 \, \mathcal{G}_{high}(\xi), & m < 0 \ m^2 \, \mathcal{G}_{low}(\xi), & m > 0 \end{array}
ight., \quad \xi = h/|m|^{15/8}$$

$$\mathcal{F}(m,0) = rac{m^2}{8\pi} \log m^2, \quad G_{high}(0) = G_{low}(0) = 0$$

They can be expanded in ξ (Fonseca & Zamolodchikov)

$$G_{high}(\xi) = G_2 \xi^2 + G_4 \xi^4 + G_6 \xi^6 + \dots$$
$$G_{low}(\xi) = \tilde{G}_1 \xi + \tilde{G}_2 \xi^2 + \tilde{G}_3 \xi^3 + \dots$$

The expansion of $\Phi(\eta)$

$$\Phi(\eta) = -rac{\eta^2}{8\pi} \log \eta^2 + \sum_{k=0}^{\infty} \Phi_k \eta^k$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\tilde{G}_1 = -2^{1/12} e^{-1/8} \mathcal{A}^{3/2} = -1.357838341706595 \dots$$

The coefficients G_2 and \tilde{G}_2 have integral expressions (BMW, TM) involving solutions of the Painlevé III (V) equation. They were numerically evaluated to very high precision (50 digits) in (ONGP)

$$G_2 = -1.845228078232838\ldots, \qquad \tilde{G}_2 = -0.0489532897203\ldots$$

The coefficient Φ_0 was calculated by Fateev

$$\Phi_{0} = -\frac{(2\pi)^{\frac{1}{15}}\gamma(\frac{1}{3})\gamma(\frac{1}{5})\gamma(\frac{7}{15})}{\left[\gamma(\frac{1}{4})\gamma^{2}(\frac{3}{16})\right]^{\frac{8}{15}}} = -1.19773338379799\dots, \quad \gamma(x) = \frac{\Gamma(x)}{\Gamma(1-x)}$$

The coefficient Φ_1 has an explicit integral representation, obtained in (FLZ²). We have evaluated the required integral explicitly

$$\Phi_{1} = -\frac{32 \cdot 2^{\frac{3}{4}}}{225 (2\pi)^{\frac{7}{15}}} \frac{\gamma(\frac{1}{3})\gamma(\frac{1}{8}) \prod_{k=3}^{7} \gamma(\frac{k}{15})}{\left[\gamma(\frac{1}{4})\gamma^{2}(\frac{3}{16})\right]^{\frac{19}{15}}} = -0.3188101248906\dots$$

Preliminaries 00	Variational CTM method	Renormalization group scaling	Lattice calculations ●00000	Conclusion
l attice d	alculations			

Using the CTM method we calculated ≈ 10000 high precision data points for the free energy, magnetization and internal energy in the range $10^{-7} < H < 10^{-2}$ and $0.9\beta_c < \beta < 1.1\beta_c$. Lattice free energy

$$F(\tau, H) = F_{sing}(\tau, H) + F_{reg}(\tau, H) + F_{sub}(\tau, H), \qquad \tau, H \to 0$$

$$F_{sing}(\tau, H) = rac{m^2}{8\pi} \log m^2 + h^{16/15} \Phi(rac{m}{h^{8/15}}), \quad F_{reg}(\tau, H) = A(\tau) + H^2 B(\tau) + O(H^4)$$

$$m(\tau, H) = -\sqrt{2}\tau a(\tau) + H^2 b(\tau) + O(H^4)$$

$$h(\tau, H) = C_h H \left[c(\tau) + H^2 d(\tau) + O(H^4) \right]$$

$$\Phi(\eta) = -rac{\eta^2}{8\pi} \log \eta^2 + \sum_{k=0}^\infty \Phi_k \eta^k$$

 $\Phi_{\textit{low}}(\eta) \quad = \quad \tilde{G}_1 \eta^{\frac{1}{8}} + \tilde{G}_2 \eta^{-\frac{7}{4}} + \tilde{G}_3 \eta^{-\frac{29}{8}} + \dots \qquad \qquad \text{for real} \quad \eta \to +\infty$

 $\Phi_{high}(\eta) = G_2(-\eta)^{-\frac{7}{4}} + G_4(-\eta)^{-\frac{22}{4}} + G_6(-\eta)^{-\frac{37}{4}} + \dots \text{ for real } \eta \to -\infty$

Preliminaries 00	Variational CTM method	Renormalization group scaling	Lattice calculations 000000	Conclusion
Lattice c	alculations			

Onsager's solution:

$$F(\tau, 0) = \log \sqrt{2} \cosh(2\beta) + \int_0^{\pi} \frac{d\theta}{2\pi} \log \left[1 + \left(1 - \frac{\cos^2 \theta}{1 + \tau^2} \right)^{1/2} \right]$$

$$a(\tau) = 1 - \frac{3\tau^2}{16} + \frac{137\tau^4}{1536} + O(\tau^6)$$

$$A(\tau) = -\frac{2\mathcal{G}}{\pi} - \frac{\log 2}{2} + \frac{\tau}{2} - \frac{\tau^2(1+5\log 2)}{4\pi} - \frac{\tau^3}{12} + \frac{5\tau^4(1+6\log 2)}{64\pi} + O(\tau^5)$$

Magnetization:

 $M(\tau,0) = (1-k(\tau)^2)^{1/8}, \quad \tau < 0, \quad k = k(\tau) = (\sqrt{1+\tau^2}+\tau)^2$

$$c(\tau) = 1 + \frac{\tau}{4} + \frac{15\tau^2}{128} - \frac{9\tau^3}{512} - \frac{4333\tau^4}{98304} + O(\tau^5)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Preliminaries 00	Variational CTM method	Renormalization group scaling	Lattice calculations	Conclusion
Suscept	ibility			

Susceptibility (Orrick, Nickel, Guttmann, Perk (2001)):

$$\begin{split} \chi(\tau)_{\text{ONGP}} &= -2^{-\frac{7}{8}} \, C_h^2 \, G''(0) \, |\tau|^{-\frac{7}{4}} \Big(1 + \frac{\tau}{2} + \frac{5\tau^2}{8} + \frac{3\tau^3}{16} - \frac{23\tau^4}{384} + O(\tau^5) \Big) \\ &+ e(\tau) + f(\tau) \log |\tau| + O(\tau^3 \log |\tau|) \end{split}$$

$$\chi(\tau) = -2^{-\frac{7}{8}} C_h^2 G''(0) |\tau|^{-\frac{7}{4}} a(\tau)^{-\frac{7}{4}} c(\tau)^2 - \frac{\partial^2 F_{sub}(\tau, H)}{\partial H^2}\Big|_{H=0}$$

$$-2B(\tau) + \frac{\tau \, \mathsf{a}(\tau) \, \mathsf{b}(\tau)}{\sqrt{2} \, \pi} \Big(1 + \log \left(2\tau^2 \, \mathsf{a}(\tau) \right) \Big)$$

 $B(\tau) = 0.0520666225469 + 0.0769120341893 \tau + 0.0360200462309 \tau^2 + O(\tau^3)$

$$b(\tau) = \mu_h \left(1 + \frac{\tau}{2} + O(\tau^2) \right), \qquad \mu_h = 0.071868670814$$

$$\left(2^{-\frac{7}{8}} C_h^2 G''(0)\right)^{-1} \frac{\partial^2 F_{sub}(\tau, H)}{\partial H^2}\Big|_{H=0} = -\frac{1}{384} |\tau|^{\frac{9}{4}} + \dots$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Scaling Function for the 2D Ising model in a magnetic field

Prelimina 00			Renormalization group sca	aling	Lattice calculations 0000€0	Conclusion				
_	~		~			× .				

Γ)ata	for	the	functi	on Φ	(n)	
-	ala	101	LIIC	Tuncu	UII V	(1))

	CTM (This work)	TFFSA	Ext. DR	Other
Φ ₀	-1.197733383797993(1)	-1.1977331	-1.1977320	-1.197733383797993
Φ_1	-0.318810124891(1)	-0.3188103	-0.3188192	-0.3188101248906
Φ2	0.110886196683(2)	0.1108867	0.1108915	—
Φ3	0.01642689465(2)	0.0164266	0.0164252	—
Φ_4	$-2.639978(1) imes 10^{-4}$	$-2.64 imes10^{-4}$	$-2.64 imes10^{-4}$	—
Φ_5	$-5.140526(1) imes 10^{-4}$	$-5.14 imes10^{-4}$	$-5.14 imes10^{-4}$	—
Φ ₆	$2.08865(1) \times 10^{-4}$	$2.07 imes10^{-4}$	$2.09 imes10^{-4}$	—
Φ ₇	$-4.4819(1) imes 10^{-5}$	$-4.52 imes10^{-5}$	$-4.48 imes10^{-5}$	—

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Preliminaries 00	Variational CTM method	Renormalization group scaling	Lattice calculations	Conclusion
Data for th	e function $\Phi(\eta)$			

$\tilde{G}_1 = -1.3578383417066(1) = -1.35783835 = -1.357838341706595 MW$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LF
\tilde{G}_7 2.937665(3) 2.952 —	
$\tilde{G}_4 = -0.068362119(2) = -0.0685060 = -0.0685535 \text{ MW}; -0.0685(2)$	

	CTM (This work)	High-T DR (FZ)	From References	
G_2 G_4 G_6 G_8 G_{10}	$\begin{array}{r} -1.8452280782328(2)\\ 8.333711750(5)\\ -95.16896(1)\\ 1457.62(3)\\ -25891(2)\end{array}$	-1.8452283 8.33410 -95.1884 1458.21 -25889	$\begin{array}{r} -1.845228078232838\\ 8.33370(1)\\ -95.1689(4)\\ 1457.55(11)\\ -25884(13)\end{array}$	(BMW,TM) (CHPV) (CHPV) (CHPV) (CHPV)

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Conclusion

- The numerical corner-transfer matrix algorithm demonstrates remarkable power for the 2D lattice Ising model.
- Among other results we showed excellent agreement with the field theory predictions by Fonseca & Zamolodchikov for the scaling function.
- The CTM method can be naturally formulated for any statistical lattice system including vertex models in 2D and 3D, and thus (1+1)D and (2+1)D quantum systems.
- We have implemented fast parallelized codes running on various computers. For example, CPU time for the Ising model calculations was about 9000 hours (1 CPU equivalent) with parallelization level of 15-50 CPU's.
- We aim to apply it to a range of statistical mechanics problems – self-avoiding polygons, 3D Ising model, etc.