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We investigate, via numerical simulation, heat transport in the nonequilibrium stationary state

(NESS) of the 1D classical Toda chain with an additional pinning potential, which destroys momen-

tum conservation. The NESS is produced by coupling the system, via Langevin dynamics, to two

reservoirs at different temperatures. To our surprise, we find that when the pinning is harmonic, the

transport is ballistic. We also find that on a periodic ring with nonequilibrium initial conditions and

no reservoirs, the energy current oscillates without decay. Lastly, Poincaré sections of the 3-body

case indicate that for all tested initial conditions, the dynamics occur on a 3-dimensional manifold.

These observations suggest that the N -body Toda chain with harmonic pinning may be integrable.

Alternatively, and more likely, this would be an example of a nonintegrable system without momen-

tum conservation for which the heat flux is ballistic - contrary to all current expectations.

I. INTRODUCTION

The transport of thermal energy in Hamiltonian systems is a problem of great theoretical and practical interest

[1,2]. In its simplest form, one considers heat flow in the nonequilibrium stationary state (NESS) of a system in

contact with two thermal reservoirs at different temperatures. Very little is known rigorously about this problem

except in the case of harmonic crystals [3] or hard rods in 1D [4]. These models are special cases of the larger class

of integrable models, whose extensive numbers of conserved quantities are expected in general to lead to ballistic

heat transport [5–8]. This means that if a system of length N (and cross-section A) is put in contact with heat

reservoirs at temperatures TL and TR, TL > TR, at its left and right ends, then the heat flow in the stationary

state J would be (except for boundary effects) independent of N . This is what is observed for the Toda lattice

and it stands in contrast to the case where we have dissipative transport satisfying Fourier’s law, where J would

be proportional to N−1.

In the absence of exact results, one has to rely on heuristics and simulations. A large number of these have

focused on 1D systems. These have led to the following commonly accepted truths (CAT): Integrable systems

such as the Toda chain [5,9,10], the Calogero-Moser system, the harmonic chain, and hard rods have ballistic

transport, i.e., J ∼ N0. Nonlinear non-integrable systems such as the Fermi-Pasta-Ulam (FPU) chain or the

diatomic Toda chain [11] have J ∼ N−α with α < 1, for the momentum conserving case: the actual value of

α depends on the system – see [12] and references therein. When a nonintegrable system does not conserve

momentum due to pinning by a one body potential, the transport is diffusive, also called “normal”, with α = 1.

We find, via numerical simulations, that the Toda chain with harmonic pinning has ballistic transport of heat.

Because this system is generally believed to be nonintegrable, either the prevailing wisdom about 1D transport

needs modification or this system is in fact integrable. In either case, the result is rather surprising and requires

further investigation. We note that the Poincaré sections of the 3-body case indicate that the dynamics take

place on a 3-dimensional manifold for all tested initial conditions, indicating that there are 3 conserved quantities
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in this case (the first two being the Hamiltonian itself and a quantity corresponding to the harmonic motion of

the center of mass). We also note that when the pinning is done by a quartic potential, then the heat transport

is clearly not ballistic, although we cannot give clear evidence that α = 1. We suspect the transport is indeed

diffusive, as quartic pinning is sufficient to induce diffusive scaling in the harmonic chain [13].

II. THE MODEL

Consider a 1-dimensional chain of N + 2 labeled particles, i.e., located on the lattice L = {0, 1, ..., N,N + 1},
with the following classical Hamiltonian H

H =

N+1∑
i=0

[
p2i
2

+
ν2

z
qzi + V (ri)

]
, ri ≡ qi+1 − qi, z even. (1)

Here {qi} are the displacements of the particles, {pi} are their momenta, ν is the strength of the one-body pinning

potential and Vi ≡ V (ri) is the interaction potential. For periodic boundary conditions VN+1 = V (q0 − qN+1)

while for fixed boundary conditions VN+1 = 0 and q0 = qN+1 = p0 = pN+1 = 0. When ν = 0 and

Vi =
a

b
exp[−bri], a, b > 0, (2)

the system is the Toda chain [14], which is a well-known integrable model for both periodic and fixed boundary

conditions [15,16]. Unless otherwise specified, Vi will refer to the Toda interaction for the remainder of this work.

In this note, we numerically investigate the heat transport properties of the fixed boundary Toda chain with

the addition of an on-site harmonic potential, i.e., ν 6= 0 and z = 2. In general, such a modification is expected

to break the integrability of the ν = 0 system when the number of particles is greater than 2. Indeed, the only

obvious conserved quantities when ν 6= 0 are H itself and the center of mass term hc

hc =
1

2

(N+1∑
i=0

pi

)2

+
ν2

2

(N+1∑
i=0

qi

)2

. (3)

We couple particles 1 and N of the chain to Langevin baths with a coupling constant µ, which act as ther-

mal reservoirs at temperatures TL and TR and induce a nonequilibrium steady state (NESS). The infinitesimal

generator of motion L is therefore

L(·) = µB1,TL
(·) + µBN,TR

(·) +A(·),

A(·) =

N∑
j=1

(pj+1 − pj)∂rj +

N∑
j=1

(V ′j − V ′j−1 − ν2qz−1j )∂pj ,

Bj,TL/R
(·) = −pj ∂pj + T ∂2pj , j = 1, N ; µ = bath coupling

(4)

where V ′j ≡
dV (rj)
drj

. For systems like Eq. (4), the integrability of the bulk dynamics plays a central role in deter-

mining the transport properties [5], although in the quantum mechanical case this statement requires qualification

[17]. The central quantity of interest is the average heat current J , which in the NESS is given by

J = 〈Jj〉 = −
〈

1

2
(pj + pj+1)V ′j

〉
, j ∈ [2, N − 1], (5)
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where 〈·〉 refers to the NESS average, which in simulations is computed by first allowing the system sufficient time

to relax to the NESS before time averaging. Also of interest is the NESS temperature profile Tj

Tj = 〈p2j 〉, j ∈ [1, N ]. (6)

In the following, we will give evidence that when z = 2, J ∼ N0 and that Tj is independent of j in the bulk,

with a jump in Tj at the reservoirs. These two properties are only expected to hold when the bulk dynamics

are integrable. Indeed, because these bulk dynamics are expected to be nonintegrable and break translational

invariance, one would expect J ∼ N−1 and Tj to be a continous curve interpolating between TL and TR. We

then show that when the pinning is anharmonic, e.g., z = 4, then the system satisfies the ordinary expectations.

Spurred by the unexpected harmonic pinning result, we then give further evidence of nondissipative behavior in

this model.

III. NONDISSIPATIVE BEHAVIOR

A. Ballistic transport

Consider the dynamics Eq. (4) for the Toda interaction Eq. (2) and z = 2 (harmonic pinning). We integrate

Eq. (4) using a velocity Verlet algorithm adapted to include the Langevin reservoirs [18]. In Fig. 1, we show the

steady state temperature profiles for several N and in Fig. 2 we show the values of the corresponding steady state

currents, which we measure in three ways. JBulk is obtained by averaging J from Eq. (5) over the entire bulk of

the chain, while JL and JR follow from the steady-state average of the energy flux from a Langevin bath

JBulk =
1

N − 2

N−1∑
j=2

〈Jj〉,

JL = µ(TL − 〈p21〉),

JR = µ(〈p2N 〉 − TR).

(7)

The agreement of the three numerically obtained currents from Eq. (7) indicates that we have indeed reached the

steady state. The flat temperature profile and non-scaling current illustrated in Fig. 1 and Fig. 2 is expected

for the ν = 0 (integrable) case, but it is entirely surprising for ν 6= 0. In Fig. 3, we vary ν and show that J is a

decreasing function of ν, as expected for pinned chains [19].

We show a marked change in behavior in Fig. 4 for the Toda chain with quartic pinning (z = 4). There, as N

increases, the temperature profiles approach a smooth curve interpolating between TL and TR, and the current J

approximately satisfies J ∼ N−α, with α = 0.88.

B. Persistent heat currents in the periodic chain

Consider now the dynamics of the system with Hamiltonian 1, z = 2, and interaction 2 with periodic boundary

conditions and no external driving. Given the observed ballistic heat transport in the corresponding driven

system, one expects any initial heat current to propagate without dissipation in the periodic system. In Fig. 6,

we observe such behavior in a 200 particle system for times long enough for the current to propagate many times
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FIG. 1: Temperature profiles (TL = 4, TR = 1) for the Toda chain with harmonic pinning (a = b = µ = ν = 1, z = 2).

The j-th particle occupies position xj = j/N . Each profile is an average over 6 runs. The dynamics were integrated with

a timestep dt = 0.005. We allow 2 × 109 timesteps to reach the NESS and then average the currents and temperature

profiles over the same amount of time, with 2× 104 timesteps in between each measurement. Insert: Averaged site-by-site

current profile. The fact these profiles are flat indicates that we averaged in the NESS.

around the chain. Similar nondissipative behavior in the harmonically pinned Toda chain with open boundary was

numerically observed in [20]. In that context, the Toda potential Eq. (2) arises as an effective interaction between

well-separated solitons of certain solutions of the Gross-Pitaevskii PDE, which models solitons in Bose-Einstein

condensates [21,22]. When the Toda chain was placed in a harmonic trap (which is mathematically identical to

pinning each particle in the chain), a Toda soliton was observed to oscillate persistently like the spheres of a

Newton’s cradle. In diffusive systems, any initial current decays to thermal noise as exemplified in Fig. 7 when

the Toda chain is subject to quartic pinning (z = 4).

C. Poincaré sections

The observations of Sec. III A and Sec. III B for z = 2 sharply contradict the CAT about the behavior for

nonintegrable chains that break momentum conservation. On the other hand, it is possible that the Toda chain

with harmonic pinning is in fact integrable. Indeed, the Calogero-Moser Hamiltonian remains integrable when

harmonic pinning is added [23]. While it is highly unlikely that such a simple generalization of a well-known

integrable model would have escaped notice for decades, we present dynamical evidence that a higher conservation

law exists for 3 particle Toda chains with harmonic pinning. To do so, we construct Poincaré sections of the open

chain dynamics, where the end particles are free to move. Each time the particle labeled “0” returns to its initial
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FIG. 2: The currents of the temperature profiles from Fig. 1 as a function of N . There is no appreciable decay of the currents

as N increases, i.e., the transport is ballistic. The ratios of the bulk currents are J100/J50 = 0.995 and J200/J100 = 0.992.

FIG. 3: Observed decrease in current as the pinning strength ν is increased for the driven Toda chain with harmonic

pinning. Here N = 100 and all parameters are the same as in Fig. 1, save for the varying ν and a shorter relaxation and

observation time, both 2× 108 time steps. The three methods of measuring the current from Eq. (7) significantly overlap.



6

FIG. 4: Temperature profiles and currents for the Toda chain with quartic pinning (z = 4), with all parameters the same

as in Fig. 1. Note that with increasing N the profile approaches a smooth curve between TL = 4 and TR = 1. Insert:

Averaged site-by-site current profile. The fact these profiles are flat indicates that we averaged in the NESS.

position, we record the momenta of all three particles.

If the system were nonintegrable, the dynamics of the 3-body case would take place of a 4-dimensional manifold,

for there are 6 degrees of freedom corresponding to the positions and momenta, and the conserved Hamiltonian

and the conserved term hc from Eq. (3) reduce this number to 6 - 2 = 4. By recording sections when q0 = q0(0)

and pj = p for either j = 0, 1 or 2, we therefore expect to obtain a 4 - 2 = 2 dimensional cross section of the

dynamics. For all initial conditions we tested, however, such cross sections are 1-dimensional curves, indicating the

presence of an additional conserved quantity. We illustrate this point in Fig. 8. If there exists a third conserved

quantity that Poisson commutes with hc, the 3-body case is integrable.

We emphasize that the mere existence of initial conditions that constrain the dynamics to lower dimensional

manifolds is generic to nonintegrable models. If, however, all initial conditions lead to such constrained dynamics,

as is the case for Liouville integrability, then it is quite likely that more conserved quantities exist. We tested

several random initial conditions for the 3-body case.
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of the flat temperature profile. We also thank Cédric Bernardin, Stefano Olla, Herbert Spohn, Ovidiu Costin,
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FIG. 5: Log-log plot of the scaling of J with respect to N for the temperature profiles of Fig. 4. The straight line was

selected to interpolate between JBulk for N = 100 and N = 200 with JBulk ∼ N−α, α = 0.88. We use the bulk current

because its variance is reduced by averaging over the chain. Note that α = 0.88 differs appreciably from the diffusive

scaling exponent of 1, but typically to truly see diffusive behavior one needs to go to larger N .

FIG. 6: Initial and long time behavior of the persistent total current in the Toda chain from Eq. (1) and Eq. (2) (a = b = 1)

with harmonic pinning (z = 2, ν = 1) and periodic boundary conditions, N = 198. The dominant frequency of the long

time current is very close to the value of the pinning frequency. The dynamics were integrated with a timestep of dt = 10−4,

and initial condition q0(0) = −1, p1(0) = 1, q2(0) = 1, with all other initial coordinates and momenta zero. The same

dynamics with dt = 10−3 are nearly identical. Insert: locally averaged maxima and minima of the current for times

t ∈ [0, 8× 104]. Note in Fig. 7 the decay of the current in the quartic pinning case.
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FIG. 7: Current in the Toda chain with quartic pinning (z = 4) for the same parameters and initial conditions as Fig. 6.

The current dissipates into noise fluctuating about zero. Insert: Local average of the current for t ∈ [0, 8× 104].

FIG. 8: Poincaré sections for the 3-body open Toda chain (a = b = 1) with harmonic pinning (z = 2, ν = 1). The four

images correspond to two different runs (top, bottom) where the momenta pj were recorded each time q0(t) ∼ q0(0) (within

a tolerance of δ = 0.001). Within each cross section is indicated which momentum is kept fixed and the corresponding

value. The tolerance of the fixed momentum is adjusted to allow enough points to make the shape of the curves clear.
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