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1. INTRODUCTION

To fluctuate is normal, and in most cases, the fluctuations themselves are normal.

In this brief survey, we explore the subject of fluctuations in several models of hyperuniform

particle systems, that is, point processes with reduced number variance. We will also study large

deviations for such systems, and finally, the notions of rigidity phenomena in such systems which has

arisen in recent work.

A quantity of key interest in the study of stochastic particle systems is the fluctuation of the

particle number in a domain. More precisely, suppose we have a particle system on a Euclidean

space Rd, and suppose we have a sequence of domains Λn ↑ Rd in a self similar manner, that is
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Λn = {λn ·x : x ∈ Λ1} where 0 < λn ↑ ∞. Denoting by N(Λn) the (random) number of particles in

Λn, we are interested in the variance Var(N(Λn)). In most models of particle systems, including the

Poisson process, Gibbsian models (with tempered interaction potentials), Bosonic and other models

exhibiting FKG type properties, the fluctuations are extensive, i.e. asymptotically they grow like the

volume: Var(N(Λn)) = |Λn|(1 + o(1)), where |Λn| denotes the Euclidean volume of Λn. In some

cases of physical interest, e.g. at critical points, they grow faster than |Λn|. When the fluctuations

grow like the volume, we call such growth “extensive”.

However, there are many natural models where extensive growth of fluctuations is not true; in-

deed for thermodynamic limits of Coulomb systems, eigenvalues of random matrices, zeros of random

polynomials and many other Fermionic models, the fluctuations are sub-extensive: Var(N(Λn)) =

o(|Λn|), and in fact Var(N(Λn)) = |∂Λn|(1 + o(1)) in many examples. Here |∂Λn| denotes the

Euclidean area of the boundary ∂Λn of the domain Λn. Point processes with sub-extensive fluctu-

ations of the particle number are referred to as hyperuniform or superhomogeneous. Hyperuniform

processes have been known and studied for several decades (see [40, 43, 44, 54, 55]). Recently they

have attracted renewed interest in the material science community [33, 57] where hyperuniformity

has been claimed in many remarkable contexts like shear flows in dilute suspensions and critical

absorbing states in non-equilibrium systems.

Another feature of the particle counts, in a fairly general setting, is that under natural centering

and scaling, the fluctuations are asymptotically Gaussian. This is known for a wide range of particle

systems [15, 40, 53]. Recently, sufficient criteria for the existence of CLT and local CLT, involving

the locations of zeros of the generating polynomial for particle count, has been obtained by various

authors [29, 41].

Large deviations (in the space of empirical measures) for particle systems have also been exten-

sively studied [3, 16]. Other than the case of Gibbsian measures, large deviation results are known

for several hyperuniform models, including eigenvalues of Gaussian random matrices and zeros of

Gaussian random polynomials. A key instance of this is the study of hole (or overcrowding) proba-

bilities, that is, the event that there are no particles (resp., more than typical number of particles) in a

large domain. Both moderate and very large deviations are understood (for Gaussian matrices as well

as polynomials). These laws are of the same form for both processes [38, 47].

A relatively recent development has been the study of so-called rigidity phenomena. Roughly

speaking, this entails that certain statistics of the particles in a local neighbourhoodD are determined

almost surely by the particle configuration outside D. In other words, these statistics of the particles
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in D are measurable functions of the particle configuration outside. The most fundamental form of

rigidity phenomena is rigidity of the particle number in the domain D. Following initial results in

[30] and [25], a wide variety of such rigidity phenomena (and related behaviour) has been studied in

a large class of point processes, [10, 11, 48]. A very recent result in this direction provides sufficient

conditions for rigidity of particle numbers in terms of hyperuniformity and decay of correlations in

one and two dimentions [28].

2. BASIC NOTIONS

A common general setting in which to study point processes is a locally compact Hausdorff space

X , equipped with a regular Borel measure µ. We consider the set S(X) of locally finite point sets

on X , equipped with the topology of weak convergence on compact sets. It is well known that the

space S(X) is a Polish space with this topology. A point process, formally speaking, is a probability

measure on S(X). Equivalently, it can be seen as a random variable taking values in the space S(X).

Informally, a point process is a random point set in X . By identifying a locally finite point set with

its induced counting measure, this can also be thought of as a random counting measure on X . For

a more detailed study of point processes, we refer the reader to [15]. In this survey, we will mostly

specialize to the case X = Rd and µ the Lebesgue measure.

Just as a real-valued random variable is characterized by its cumulative distribution function,

similarly the distribution of a point process is described by its various intensity measures. To be

precise, the r-point intensity measure µr is given by the identity, for N(D) the (random) number of

points in any Borel subset D ⊂ X ,

E
[(

N(D)
r

)
r!

]
=

∫

D
. . .

∫

D
dµr(x1, . . . , xr).

In most cases µr is absolutely continuous with respect to µ⊗r, and the corresponding Radon Nikodym

derivative ρr is called the r-point intensity (or correlation) function of the point process. Informally

speaking, ρr(x1, . . . , xr) denotes the probability density of having points of the process at locations

x1, . . . , xr. In particular, ρ1(x) denotes the local particle density per unit measure µ at x, and ρ2(x, y)

denotes the pair correlation function of the point process.

For any point process on a Euclidean space Rd, there is a natural way in which a group of trans-

lations can act on it. Namely, a translation by a vector v ∈ Rd acts on a point configuration Υ as

follows: Tv(Υ) := {x + v : x ∈ Υ}. Since a point process on Rd can be thought of as a probability

measure on S(Rd), therefore this canonically induces an action of the group of translations on a point

process. Translation invariance of a point process, therefore, simply means that the law of the point
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process is invariant under such action. An informal way to understand translation invariance is to

say that the statistics of the points in a local neighbourhood does not depend on its location. For a

translation invariant point process, all its intensity functions are invariant under the diagonal action

of the translation group, and in particular, the one-point intensity function ρ1 is a constant, giving the

expected number of particles per unit volume.

In this study, we will consider point processes on a Euclidean spaceRd that are invariant under the

action of the group of translations byRd or by Zd. Unless otherwise stated, our operating assumption

will also demand ergodicity of the point process measure under such action. For periodic models, that

is, those models which are invariant in distribution under translations by Zd, we shall consider the

point configuration with a random shift in the unit cube of Rd. This will make the model invariant

under the action of translations of Rd, and will lead to a uniform treatment of the various models

under consideration. Key models that we are going to consider will include the Ginibre ensemble, the

Gaussian zero processes, Coulomb systems, determinantal processes and perturbed lattice models. In

subsequent sections, we will describe the technical aspects of these models in greater detail.

3. FLUCTUATIONS IN POINT PROCESSES

3.1 Fluctuations and hyperuniform processes

A key object of interest in studying point processes is the particle number. More precisely, for a

domain Λ ⊂ Rd, we consider the number N(Λ) of points in Λ. Under our assumptions of translation

invariance, it can be easily seen that in expectation, we have

E[N(Λ)] = ρ|Λ|, (1)

where |Λ| denotes the Euclidean volume of Λ, and ρ (= ρ1) is the (one-point) intensity of the transla-

tion invariant point process on Rd.

We can therefore focus our attention on the fluctuations in the particle number. It is known that

for “most” systems, the size of the fluctuations of N(Λ), as measured by their variance Var(N(Λ)),

will grow like the volume |Λ|. A typical example is that of a homogeneous Poisson process on Rd.

Before moving on to the case of sub-volume growth of variance, which will be a key focus in this

paper, let us point out that there are examples, particularly in the case of point processes defined on

lattices, where we can have Var(N(Λ)) grow faster than |Λ|, i.e. Var(N(Λ))/|Λ| → ∞ as |Λ| ↑ ∞.

Such a phenomenon is observed at “critical points” in such systems, corresponding to “critical” values

in the temperature or pressure [18].
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An important example of such a system is obtained from the Ising spin system with ferromagnetic

interactions at zero magnetic field. To map it to a point process, we simply identify the sites having

up-spins (or + charges) with having a particle at that site. Under this identification, the variance of

N(Λ) is 1/4-th of the variance of the magnetization (which, in turn, is the sum of the signs in the

domain Λ). From classical results on Ising spin systems, it follows that Var(N(Λ)) grows like the

volume |Λ| when the inverse temperature β < βc, where βc is the critical temperature, known to be

finite in d > 1. However, at the critical value of β = βc, it is known that Var(N(Λ)) grows faster

than |Λ| (in fact, it grows like a power law |Λ|γ where γ > 1). For β > βc, the system is not ergodic,

with the variance being extensive in each of the two extremal states. For a detailed reference, we

direct the reader to [18, 22].

As noted already, our concern here is with hyperuniform systems, where the variance is sub-

extensive, that is,

lim
Λ↑Rd

Var(N(Λ))
|Λ| → 0. (2)

3.2 Ginibre’s theorem

Let us begin, however, with an old elegant result by Ginibre [23], providing sufficient conditions for

an extensive lower bound on Var(N(Λ)), that is, for not being hyperuniform.

Theorem 3.1 — (Ginibre). Let X be a random variable taking on integer values in the range

0 ≤ m ≤ N ≤ ∞, with P(X = m) = p(m). If for some A > −1 and all m ∈ [0, N − 2], we have

(m + 2)
p(m + 2)
p(m + 1)

≥ (m + 1)
p(m + 1)

p(m)
−A, (3)

then we can conclude that

Var(X) ≥ E[X]
1 + A

.

Remark 3.1 : For a translation invariant or periodic point process with X = N(Λ) satisfying (3),

this gives Var(N(Λ)) ≥ ρ|Λ|
1+A , where ρ is the one-point intensity.

PROOF : Here we give a brief sketch of Ginibre’s Theorem. To this end, note that

∑

m≥0

p(m)[(m + 1)
p(m + 1)

p(m)
] = E[X],
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and

(1 + A)2(E[X])2

=
(∑

p(m)[(m + 1)
p(m + 1)

p(m)
+ Am]

)2

≤
∑

p(m)
[
(m + 1)

p(m + 1)
p(m)

+ Am

]2

.

Expanding the squares and using (3) (coupled with the fact that A > −1) gives us the conclusion

Var(X) ≥ E[X]
1+A , as desired. 2

Ginibre shows (somewhat cryptically) that (3) is satisfied by X = N(Λ) for equilibrium systems

with tempered potentials (and some hard-core like conditions), thus proving that such systems are

not hyperuniform. This has implications for the nature of phase transitions in such systems, e.g. the

pressure of a fluid is a continuous function of the density. More precisely, suppose ρ is the average

density and P is the pressure obtained from the grand canonical ensemble in the thermodynamic limit

(for details, see [22, 50]). Then it is known that

lim
|Λ|↑∞

Var(N(Λ))
|Λ| = ρ

dρ

dP
. (4)

If there were to be a discontinuity in the pressure as a function of density (which would correspond

to a zeroth order phase transition), then the right hand side in (4) would have to be 0. This would

imply that Var(N(Λ))/|Λ| would have to tend to 0 as |Λ| → ∞ : a possibility that is ruled out by

Ginibre’s theorem. For more details, we refer the reader to [18, 22, 50].

Ginibre’s theorem, in the context of particle systems, explicitly considers Gibbs measures of sys-

tems having two body interaction. Ginibre’s theorem has been generalized to certain graph counting

polynomials that embody many-body interactions; see [41].

4. VARIANCE AND THE PAIR CORRELATION FUNCTION

We begin by reminding the reader of some important statistics related to a point process. For a point

process (with intensities absolutely continuous with respect to the Lebesgue measure on Rd), we

define the one and two point intensity (or correlation) functions as

E[N(Λ)] =
∫

Λ
ρ1(x)dx (5)

and

E
[(

N(Λ)
2

)
2!

]
=

∫ ∫

Λ×Λ
ρ2(x, y)dxdy (6)
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for all Borel sets Λ ⊂ Rd.

We also define the truncated pair correlation function ρ
(2)
tr (x, y) as

ρ
(2)
tr (x, y) = ρ2(x, y)− ρ1(x)ρ1(y), (7)

and the truncated “full” pair correlation function G(x, y) as

G(x, y) = ρ1(x)δ(x, y) + ρ2(x, y)− ρ1(x)ρ1(y), (8)

where δ(x, y) is the Dirac delta function. An equivalent way to understand G is in terms of expecta-

tions:

Var[N(Λ)] =
∫

Λ

∫

Λ
G(x, y)dxdy

For translation invariant systems G(x, y) = G(x − y). Observe that for an ergodic translation

invariant process, ρ2(x − y) → ρ2 as |x − y| → ∞, and consequently, ρ
(2)
tr (x − y) → 0 and

G(x, y) → 0 in that limit.

For a translation invariant system, we have

Var(N(Λ))

=
∫ ∫

Λ×Λ
G(x− y)dxdy

=|Λ|
∫

Rd

G(x)dx−
∫

Rd

G(x)αΛ(x)dx,

(9)

where αΛ(x) =
∫
Rd χΛ((x + y))[1− χ(y)]dy and χΛ is the indicator function of the domain Λ.

Consider the situation where |Λ| ↑ Rd in a self-similar way, e.g. by dilations ΛR := {R · x : x ∈
Λ}. In such a situation, αΛ will grow like the surface area |∂Λ| (with |∂Λ| = 2 for d = 1). Under

mild conditions on Λ (e.g. smooth boundaries), |∂Λ| ∼ |Λ|(d−1)/d as |Λ| ↑ Rd.

Dividing Var(N(Λ)) by |Λ|, we get

lim
Λ↑Rd

Var(N(Λ))
|Λ| =

∫

Rd

G(x)dx.

Definition 1 — Hyperuniform systems are those for which

lim
Λ↑Rd

Var(N(Λ))
|Λ| =

∫

Rd

G(x)dx = 0. (10)

This means that
∫

ρ
(2)
tr (x)dx = −ρ. That in turn implies, in particular, that systems for which

ρ
(2)
tr (x) ≥ 0, e.g., those satisfying the FKG inequalities (see [22, 50]), cannot be hyperuniform.
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Averaging αΛ/|∂Λ| over rotations we obtain

lim
|Λ|→∞

αΛ(r)
|∂Λ| = αd|r|, (11)

where αd is a constant [44].

For hyperuniform systems we thus have that the spherically averaged G(r) has the property
∫ ∞

0
rd−1G(r)dr = 0 (12)

and
Var(N(Λ))

|∂Λ| = −αd

∫ ∞

0
rdG(r)dr ≥ 0. (13)

In obtaining (13), we have combined (9), (10) and (11). Var(N(Λ)) will grow like |∂Λ| when the

right hand side of (13), corresponding to the first moment of G, exists. This implies in particular that

G(r) must decay faster than 1/rd+1. It follows that in d = 1, bounded variance Var(N(Λ)) ≤ C

implies that

|ρ(2)
tr (r)| ≤ K

1 + r2
.

This will be used later in Section 13. When the right hand side of (13) is infinite, Var(N(Λ)) will

grow faster than |∂Λ| but slower than |Λ|. This will be the case for the Dyson log gas discussed later.

The question whether Var(N(Λ)) can grow slower than |∂Λ| has attracted considerable interest.

It was finally settled by Beck in 1987 (see [5]) where he showed that Var(N(Λ)) cannot grow slower

than |∂Λ| if the distribution is rotationally invariant (or Λ is a ball). It is still an open question as

to how slowly this variance can grow, and whether it attains its minimum value for a regular lattice

(made translation invariant by averaging over shifts). Interestingly, it has been shown [6, 12] that for

a simple cubic lattice, there is a transition in some (large enough) dimension d(∼ 800) where putting

particles randomly inside each cube gives a smaller variance in a ball than just having particles on

Zd.

In the translation invariant case, it is relevant to consider the Fourier transform of G(r). Usually

denoted as S(k), it is non-negative, and is referred to as the “structure function” in the physics lit-

erature (e.g. see [32]). This is an important physical quantity in the study of fluids, where it turns

out to be a quantity that can be actually measured experimentally in many situations. It follows from

(10) that a system is hyperuniform when the structure function vanishes at the origin: S(k) → 0 as

|k| → 0. A relevant question is how it converges to 0 (as a power law, for example ?) Such rates

are related to the decay of ρ
(2)
tr (r) as r → ∞, and thus also, via (13), to the growth of Var(N(Λ))



FLUCTUATIONS, LARGE DEVIATIONS AND RIGIDITY 617

in hyperuniform systems. In many physical cases, one expects power law decay: S(k) ∼ |k|α (as

k → 0) and a corresponding decay of ρ
(2)
tr (r) ∼ r−γ (as r → ∞) with γ ≥ d + α (where α > 0) in

order for (10) to hold. For more details, we refer the reader to [42, 55].

5. POISSON AND OTHER EXTENSIVE SYSTEMS

The Poisson point process is the most basic example of a point process; in many ways it is the

analogue of the uniform distribution in the world of point processes. A Poisson point process can be

defined on any locally compact space X with a background measure µ, and is uniquely characterized

by the fact that the points in two disjoint subsets of X are independent of each other, and the one point

intensity measure µ1 = ρdµ. For the homogeneous Poisson point process onRd (where homogeneous
implies that the background measure µ is the Lebesgue measure), it is easy to see that the variance of

the particle number is extensive. In fact, for the homogeneous Poisson process of intensity ρ and a

domain Λ ⊂ Rd, we have the equality Var(N(Λ)) = ρ|Λ|, where |Λ| denotes the volume of Λ.

More generally, we call a particle system “extensive” if the following condition is satisfied:

if Λn is a sequence of domains that are increasing to exhaust Rd in a self-similar manner, then

Var(N(Λn)) ≥ |Λn|(1 + o(1)). Such extensive fluctuations of particle number is also true for many

other systems, including Gibbsian systems with tempered potentials and any non-Gibbsian particle

system satisfying the Ginibre Theorem or obeying the FKG inequality (see [17]). For the Poisson

point process and many systems with extensive variances as well as for some hyperuniform systems,

we also have a CLT for the normalized particle number (N(Λn)− E[N(Λn)]) /
√

Var(N(Λn)) (see

[14, 22]).

6. COULOMB SYSTEMS

6.1 The one component plasma

Coulomb systems are the primary physical examples of hyperuniform processes. To simplify matters,

we shall consider first the simplest kind of Coulomb system: the classical one component plasma

(OCP). This model, also known as “Jellium”, was introduced by Wigner in 1934 [56]. It consists of

particles with a positive charge e moving in a uniform background of negative charge with density

−ρe. The background produces an external potential proportional to ρer2
i ; where ri is the distance of

the i-th particle from the center of rotational symmetry. This model, as we shall see later, is also of

interest in other contexts, such as the distribution of eigenvalues of random matrices.

Setting e = 1, the potential energy of such a system of N particles in a spherical domain in Rd
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(or the whole of Rd) is given by

U(x1, · · · , xN ) =
N∑

i<j

vd(xi − xj) +
ρ

2

N∑

i=1

|xi|2, (14)

where, setting r = |xi − xj |, we have

vd(r) =





−r if d = 1

− log r if d = 2

r2−d if d ≥ 3.

One can also consider this system in a periodic box or on the surface of a sphere (by setting vd(x) =
∑∞

m=−∞,6=0
1

m2 exp[−2πmx/L]), see [43].

The canonical equilibrium probability distribution of this system is given by

µN ∝ exp[−βU ]. (15)

When N →∞, the measures µN are expected (and proven in some cases) to have a limit µ, which

describes a random point process in Rd with average particle density ρ. The extremal measures of the

limiting process are (expected to be) translation invariant or periodic [9, 35].

This system is exactly solvable in d = 1: the extremal µ is periodic with period ρ−1, for all

β > 0, (see [1, 39]). The probability distribution of (N(Λ) − ρ|Λ|), Λ an interval, has exponential

decay with an exponent that has a nonzero limit as |Λ| → ∞ [44]. The variance is therefore bounded,

and is trivially proportional to |∂Λ| = 2. This is an example of the general fact that extremal measures

for general 1D systems with bounded variance (or at least tightness of N(Λ)− ρ|Λ|) are periodic [2].

In d ≥ 2, the system is translation invariant at “small” β. For “large” β, the system is expected to

form a periodic “Wigner crystal”. Numerical simulations predict the formation of the Wigner crystal

to be around β = 140, in d = 2. In d = 2 this system is exactly solvable at β = 2, where it has

the same distribution as the eigenvalues of an i.i.d. complex Gaussian matrix, namely the Ginibre

ensemble, scaled to have average density ρ. The Ginibre ensemble was introduced by Ginibre as

a non-Hermitian analogue of Wigner’s Hermitian random matrix models for complex Hamiltonians

[24]. In particular, one has an exact expression for the correlation functions, which have excellent

clustering properties, with the truncated pair correlation functions decaying like a Gaussian [37] :

ρ2(r)− ρ2 = −ρ2e−πρr2
, r = |x1 − x2|. (16)
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Higher order truncated correlations also decay like e−γD2 , where D is the distance between

groups of particles. Integrating Eq. (16), one sees that
∫∞
0 G(r)dr = 0, so this system is hyper-

uniform. This is expected to be true for all values of β and all d due to Debye screening of charges

[43].

6.2 Multi-component Coulomb systems

In multi-component Coulomb systems, we have natural extensions of the various correlation func-

tions. More specifically, suppose there are two species of particles, denoted by α and β. Instead of

one and two particle intensities ρ1 and ρ2, we have two types of one-particle densities ρα and ρβ , and

three types of two-particle densities, denoted ρα,α, ρβ,β, ρα,β . If eα is the charge corresponding to the

particles of type α, then we can consider the one-particle charge intensity, q1(x) =
∑

γ eγργ(x) and

the charged truncated two-particle density

qtr
2 (x, y) =

∑

γ,λ

eγeλ[ργ,λ(x, y)− ργ(x)ρλ(y)].

As an analogue of N(Λ), we consider the net charge (i.e., the sum total of the charges of the different

kinds of particles) Q(Λ) in a domain Λ.

We then have

E[Q(Λ)] =
∫

q1(x)dx

and

Var[Q(Λ)] =
∫

Λ

∫

Λ
[q1(x)δ(x− y) + qtr

2 (x, y)]dxdy.

For neutral translation invariant Coulomb systems, we have

q1(x) ≡ 0,

and

lim
Λ↑Rd

Var(Q(Λ))
|Λ| =

∫
qtr
2 (x)dx = 0. (17)

The fluctuations in multi-component Coulomb systems are those of the net charge QΛ (see [43]

and the references therein). This is in analogy to the fluctuations of N(Λ) in the OCP. The argu-

ments in Section 4 regarding hyperuniformity would go through in this more general setting. The

consequences thereof, including rigidity also follow from similar arguments.

We note that one may consider variances of any combination of particle numbers of different

species in any multi-component system. The definitions of q1 and q2 would be as above, with the eγ

being arbitrary real weights instead of physical charges.
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The basic physical reason for this reduction in charge fluctuations in Coulomb systems is the long

range nature of the Coulomb force. This causes shielding of bare charges by “Debye screening”. This

means that if there is a fixed charge at the origin, the other charges will arrange themselves in such a

way that the electric field produced by the charge is canceled. Mathematically, it was shown by many

authors in the 70’s and 80’s that shielding is a necessary condition for having at least some kind of

of clustering of correlation functions [43]. This screening leads to a whole series of “sum-rules”, of

which (17) is the first one. For details we direct the reader to the reviews [9, 43].

We note that in many physical situations, such as those involving fluids at low and moderate

termperatures, we usually consider macroscopic systems as made up of neutral atoms or molecules

interacting via effective short range potentials. In such cases, the flcutuations in the net charge Q(Λ)

in a region Λ will be due entirely to the surface of Λ cutting these entities in a “random” way. Var[QΛ]

may then be expected to be proportional to the surface area |∂Λ| of Λ [43, 44].

6.3 Asymptotic Normality

For charge-neutral and translation invariant Coulomb systems in d ≥ 2 the charge fluctuations satisfy

a central limit theorem : deviation from the average divided by the square root of the variance gives

Q(Λ)√
Var(Q(Λ))

→ ξ,

a standard Gaussian random variable [44]. In fact, if Var[Q(Λ)] ∼ |∂Λ|, a joint central limit type

behaviour is true in the following sense [40]. Let Rd, d ≥ 2 be divided into cubes Γj of volume Ld

whose centers are located at the sites LZd. Set

Υj = Q(Γj)/
√

Var(Q(Γj))

The joint distribution of the {Υj} approaches as L →∞ a Gaussian measure with covariance

Cj,k =

[
δj,k − 1

2d

∑
e

δj−k,e

]
=

1
2d

[−∆]j,k , (∗)

where e is the unit lattice vector and ∆ is the discrete Laplacian. This means that the charge fluctua-

tions in Γj are compensated by the opposite charges in neighboring cubes. This is exactly what one

would expect when the charges are bound together in neutral molecules.

7. DETERMINANTAL PROCESSES

Determinantal processes are ones for which the k-point correlation ρk(x1, . . . , xk)

= det[K(xj , xl)]j,l=1,...,k. K is Hermitian and all its eigenvalues λj are in [0, 1]. There are more



FLUCTUATIONS, LARGE DEVIATIONS AND RIGIDITY 621

general determinantal processes but we shall not consider them here. Determinantal point processes

whose kernels are projection operators are hyperuniform (c.f. Soshnikov, [52]).

Key examples of determinantal processes include distribution of eigenvalues of the Ginibre en-

semble, which, as already stated, is the same as the 2D OCP at inverse temperature β = 2. It also

includes 1D bulk eigenvalue limit of the Gaussian or the Circular Unitary ensembles, a.k.a. the sine

kernel process or the Dyson log gas. This also turns out to be a Coulomb system with 2D logarithmic

interactions, confined to a line, at inverse temperature β = 2. In this case, G(r) decays like r−2 so

its first moment is infinite and the variance of the particle number in an interval of length |Λ| grows

like log |Λ|. The Dyson log gas is hyperuniform for all β [19]. The ground state of an ideal Fermi

gas in any dimension is also known to be a determinantal process with a projection kernel, and thus

hyperuniform.

One can prove for all determinantal processes a local CLT, using the fact that the zeros of the

generating function of a determinantal point process (whether projection or not) all lie on the negative

real axis on the complex plane, [14, 20].

8. PERTURBED LATTICE MODELS

We consider I.I.D. perturbations of a lattice, i.e. each lattice point z ∈ Zd is shifted to z + x ∈ Rd

with a probability distribution h(x)dx. These are like displacements of atoms in an ideal crystal. The

resulting processes are (periodic) hyperuniform. This can be seen by noting that the (periodic) one

particle density is given by

ρ1(x) =
∑

z∈Zd

h(x− z),
∫

h(x)dx = 1,

and

G(x, y) = ρ1(x)δ(x− y)−
∑

z∈Zd

h(x− z)h(y − z), so
∫

G(x, y)dy = 0.

These systems have Var(NΛ) ∼ c|∂Λ| when the first moment of h exists and thus bounded variance

in 1D [21].

9. G PROCESSES

Various examples of perturbed lattice models in 1D with bounded variance have been studied in the

statistics literature. A related model, the G process, was studied in [31] as a statistical mechanical

point process. To construct this process, we define a real-valued Markov process Yλ(t), for t ≥ 0,

satisfying Yλ(t) > −1; here λ is a probability measure on (−1,∞).
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Yλ(t) is defined by two conditions:

(1) Yλ(0) is distributed according to λ, and

(2) Yλ(t) increases at rate 1 as t increases, except at points of a Poisson process of density α on

R+, at which it jumps down by one unit – unless this jump would violate the condition Yλ > −1, in

which case no jump occurs.

This process has a unique stationary single-time distribution λ = λ0. The corresponding transla-

tion invariant process (obtained e.g. by imposing the initial condition λ0 at time τ and then taking the

Cesaro limit as τ → −∞) is denoted by Y (t). The points of the G process are those points at which

Y jumps. In other words, the G process is the distribution of the jump points of the Y process. The

points of the G process may be viewed as the output of a so-called D/M/1 queue. It is shown in [31]

that for this process with α > 1, ρ = 1, Var(NΛ) ≤ const., for Λ = [s, t]. It is also shown that this

system has exponential decay of the (truncated) pair correlation function.

10. GAUSSIAN ZEROS

Another important class of hyperuniform point processes that we will consider on R2 are the zeros

of the so-called planar Gaussian analytic function. These are large N limits of the zeros of random

polynomials. The standard planar Gaussian zero process is the large N limit of the zeros of the Weyl
polynomials, given by

pN (z) =
N∑

k=0

ξk
zk

√
k!

.

This is a special case of the α-Gaussian zeros, which are large N limits of the zeros of α-Weyl

polynomials

p
(α)
N (z) =

N∑

k=0

ξk
zk

(k!)α/2
.

Like the Ginibre eigenvalues and the Coulomb systems, the standard Weyl polynomials also orig-

inate in physics, and have been studied extensively by Bogomolny, Bohigas, Lebeouf and others in

the context of spectral analysis of Hamiltonians of chaotic quantum systems [7, 8]. The α-Gaussian

zeros are known to be hyperuniform for α > 0.

In extensive work by Nazarov, Tsirelson, Sodin and others [45, 46, 47, 51], it has been shown that

the standard planar Gaussian zero process, like the Ginibre ensemble, exhibits translation invariance

and Gaussian decay of the truncated pair correlation function. The fluctuations of the particle number

are sub-extensive : in fact, we have Var(N(Λ)) ∼ |∂Λ| as Λ ↑ R2 in a self similar manner. Such
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similarities in behaviour with the Ginibre ensemble calls for a comparative study of the Gaussian

zeros and the Ginibre ensemble, and we will see that in spite of the striking similarities between

the two, there are spectacular differences as stochastic processes, particularly in the light of rigidity
phenomena.

11. LARGE DEVIATIONS

As might be expected from the reduction of fluctuations, the probability of large deviations from the

mean will be smaller for hyperuniform systems than those for systems with Poisson-type fluctuations.

This problem was studied for Coulomb systems in [38], using electrostatic type arguments. They

found that this is indeed the case in all dimensions and all β > 0.

For the 2D OCP with density ρ, the probability of having n(R) particles in a disc of radius R,

corresponding to a charge |Q| = |n(R)− πρR2|, behaves as

Prob
{|n(R)− ρπR2| > bαRα

} ∼ exp
[
−cαRφ(α)

]
,

with

φ(α) =





2α− 1 , 1
2 < α ≤ 1

3α− 2 , 1 ≤ α ≤ 2

2α , α ≥ 2.

The situation in d = 3 is similar to that in d = 2 although the details differ.

This probability is much smaller than the large deviations for systems with short range interactions

where, e.g. for α = 2 one would get e−cR2 instead of e−cR4 . The symbol ∼ means that taking the

logarithm of both sides and dividing by Rφ(α) we get a finite limit when R →∞.

These “macroscopic” results can be checked and confirmed at β = 2 where we have explicit

solutions for the correlation functions. We can get then additional information such as the charge

density outside a disc of radius R conditioned on there being no particles inside. In particular the

density at r = R+ is given by ρ(R+) ∼ 1
2πρ2R.

It turns out that the large deviation function for the 2D OCP is of the same form, in its dependence

on α as that of the point process generated by the zeroes of the standard planar Gaussian Analytic

Function (henceforth GAF), f =
∑∞

k=0
ξk√
k!

zk, with the ξk i.i.d standard complex Gaussians [47].

For d = 1 with v1(r) (linear) Coulombic interactions, we have already noted the the variance of

particle numbers remains bounded in the size of the interval. The probability

Pr{|N(L)− ρL| > K} ∼ exp[−cK],
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in any interval of length L. Large deviations for this system are expected to behave as [19]

Pr{|N(L)− ρL| > κL} ∼ exp[−cL3].

For d = 1, with v2(r) = − log r interactions

Pr{|N(L)− ρL| > bL} ∼ exp[−cL2].

For perturbed lattice systems

Pr{|N(L)− ρL| > bL} ∼ h(L)cL.

On the other hand, for G processes, this probability goes like exp[−cL] (see [31]).

12. SPATIAL CONDITIONING AND DLR EQUATIONS

So far we have discussed fluctuations and large deviations of particles, or charges, in a region Λ

without saying anything about the configuration of particles/charges outside Λ, i.e. in Λc = Rd \ Λ.

We ask now: what can we say about the distribution of points inside Λ given the configuration in Λc,

i.e, we want the conditional probability µ (dXΛ|XΛc) of a configuration in dXΛ given XΛc .

For equilibrium Gibbs measures µ of particle systems on Rd the answer to this is given by the

Dobrushin-Lanford-Ruelle (DLR) equations [50].

µ (x1, . . . , xN |XΛc) =
exp [−βU(XΛ|XΛc)]∫

e−βU(XΛ|XΛc)dXΛ
(18)

where U(XΛ|XΛc) is the potential energy of a configuration in Λ given the configuration in Λc =

Rd \ Λ.

When the interaction U decays sufficiently rapidly with distance and µ is ergodic, the behaviour

of Var[N(Λ)], for large Λ, is similar to the unconditional case, and the Ginibre lower bound on the

variance holds. This is however not the case for systems with long range Coulomb interactions, where

U(XΛ|XΛc) is not well defined. In that case, as we have seen before, the condition for the Ginibre

Theorem does not hold, and there is no strictly positive lower bound on Var[N(Λ)|XΛ{ ].

13. NUMBER RIGIDITY

The property that the measure P(N(Λ)|XΛc) is concentrated at a single value of N(Λ) has been

called “[number] rigidity” in [30]. They showed that the Ginibre ensemble and the standard planar

Gaussian zero process have this property. In [25] number rigidity was also shown for the GUE
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(and the CUE) point processes. Both the Ginibre and the GUE ensemble correspond to, as already

mentioned, Coulomb systems (with logarithmic interactions) at particular temperatures.

[30] also showed that while NΛ is fixed by XΛc , the distribution of points inside Λ is not rigid; in

fact it is absolutely continuous with respect to the Lebesgue measure. A similar behaviour is true for

the d = 1 Coulomb system considered in [1]. There it was proved, for d = 1 Coulomb systems, that

the charge in an interval [a, b] = Λ, which corresponds for the OCP to the number of particles in Λ, is

uniquely specified by the configuration XΛc for all typical configurations with respect to the infinite

volume measure µ. (The set of a typical configurations has measure one).

After the work of [30] and [25] various authors have established rigidity for a number of point

processes, e.g. Beta, Gamma and Airy processes [10]. In all these cases, the process for which rigidity

was proven is hyperuniform.

In [28] it has been shown that in 1 and 2 dimensions, rigidity of particle number follows from

hyperuniformity and decay of the truncated pair correlation function (decay like r−2 or faster in 1D

and faster than r−4 in 2D). This result covers all known examples of number rigidity in 1 and 2

dimensional particle systems. Apart from the previous examples, it also includes the 1D Dyson log

gas at inverse temerature β ≤ 2 and Coulomb systems for small β in dimension d ≥ 2. It also

includes, by the remark following (13), all processes in 1D that exhibit a bounded variance of particle

number, and perturbed lattice systems in 1 and 2 dimensions.

In any determinantal process, all statistical information is, in principle, encoded in the pair (K, µ),

where K is the kernel and µ is the background measure. In view of this, it is a pertinent question

as to whether we can read off any aspect of the rigidity behaviour of the process by testing some

simple properties of the pair (K,µ). In this direction, it has been shown in [27] that, in any general

determinantal process (not necessarily on a Euclidean space), there is number rigidity only if K is the

kernel of an integral operator that acts as a projection on L2(µ). This is consistent with the conjecture

that hyperuniformity is a necessary condition for rigidity.

[49] investigated the rigidity of the i.i.d. perturbation of Zd. For d = 1, 2, they showed that

there is rigidity of numbers as soon as the random perturbation has a finite d-th moment. This is

consistent with the results of [28]. For Zd, d > 2, [49] showed that for Gaussian perturbations there

is a phase transition in the rigidity behaviour in terms of the standard deviation σ of the Gaussian.

When σ is below a critical σc, there is number rigidity, and when σ > σc, there is no rigidity. This,

in particular, negates any possibility for a sufficiency criterion for number rigidity (on the lines of

[28]) in dimensions d > 2, since for the Gaussian perturbation the truncated pair correlation decays
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exponentially for all σ (as shown by the formulae in Section 8).

14. HIGHER RIGIDITY

The plethora of highly interesting instances in nature of the phenomenon of number rigidity natu-

rally raises the question as to whether there are other manifestations of such rigidity phenomena,

particularly involving statistics other than a simple particle count. The first result in this direction

was obtained in [30], where it was shown that in the standard planar Gaussian zero process, for any

bounded open set Λ, the point configuration XΛ{ outside Λ determines precisely the number and the

sum of the points inside Λ (equivalently, the mass and the centre of mass of the particles in Λ). It

was further established that, subject to the constraint on the number and the sum (imposed by the

configuration outside), the particles inside Λ could be in any generic location inside Λ with positive

probability density (with respect to the Lebesgue measure on the relevant conserved sub-manifold).

Subsequently, this result has been widely generalized in [27] to the case of α-Gaussian zeros. In

particular, it has been shown that for the zeros of the α-Gaussian entire functions, for any bounded

open set Λ, the outside configuration XΛ{ almost surely determines the first
(b 1

αc+ 1
)

(holomorphic)

moments of the points inside Λ. Furthermore, subject to these constraints, the inside points could be

in any generic configuration inside Λ with positive probability density (with respect to the appropriate

Lebesgue measure).

15. PROOF TECHNIQUES

The basic idea of [25, 28, 30] to prove number rigidity of a point process Ξ is to find a sequence of

functions φ[ε](x) such that, φ[ε](x) = 1 for x ∈ Λ and

Var


∑

xi∈Ξ

φ[ε](xi)


 ≤ ε,

for any ε > 0. Then for small ε → 0 we have

∑

xi∈Ξ

φ[ε](xi) =
∑

χΛ(xi) +
∑

χΛc(xi)φ[ε](xi)

= N(Λ) +
∑

χΛc(xi)φ[ε](xi)

∼ E
[∑

φ[ε](xi)
]

=
∫

ρ(x)φ[ε](x)dx,

where χΛ(x) is the characteristic function of the set Λ. This determines NΛ given XΛc .
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This is accomplished in the most basic cases by choosing a sequence φR(x) = φ(x/R) with an

appropriate φ(x). More sophisticated situations demand a Cesaro-type mean of a number of such

functions in order to achieve the low-variance criterion.

To give a concrete example, we consider the case of number rigidity for the zeroes of the standard

planar GAF (i.e., Gaussian Analytic Function). In this case, it is known that, if ϕ is a C2
c function and

ϕL(·) := ϕ(·/L), then

Var


∑

xi∈Ξ

ϕL(xi)


 L→∞−−−−→ C‖∆ϕ‖2

2/L2. (19)

Thus, to prove number rigidity for Λ the unit disk following the approach mentioned above, we

choose Φ to be a C2
c function that is ≡ 1 on Λ, and L to be large enough (depending on ε, such that

Var
(∑

xi∈Ξ ΦL(xi)
) ≤ ε, which can be accomplished due to (19)).

On the other hand, for the Ginibre ensemble, it is known that for ϕ and ϕL defined as in (19) we

have

Var


∑

xi∈Ξ

ϕL(xi )


 L→∞−−−−→ C‖∇ϕ‖2

2. (20)

Due to this, a choice of Φ similar to the GAF case cannot be made directly. To overcome this

difficulty, we consider a C2
c function φ that is ≡ 1 on Λ, and look at the various scaling φ2n of φ. For

L = 2N , we then define

Φ[N ] :=
1
N




N∑

j=1

φ2j


 .

This is an analogue of a Cesaro-type sum of the various scalings φ2j of φ. It can be shown that

the random sums
(∑

xi∈Ξ ϕ2j (xi)
)∞
j=1

exhibit a fast decay of correlations at widely different scales

2j , 2k. This can be used to show that Var(Φ[N]) → 0 as N → ∞, and the rest of the proof can then

be completed as in the case of the GAF zeros.

16. OUTLOOK

In [28], the authors provide sufficient criteria for number rigidity in dimensions 1 and 2, in terms

of hyperuniformity and decay of correlations. It is an intriguing question to ask whether hyperuni-

formity, along with appropriate assumptions on the decay of correlations, are in fact necessary for

rigidity phenomena. Such a conjecture is in a sense supported by the following big-picture heuristic.

When Var[N(Λ)] grows like |Λ|, (to the leading order) it behaves like an additive functional on two

adjacent domains. This appears to indicate that surface effects become inconsequential in the limit
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|Λ| → ∞, which does not seem to be consistent with number rigidity. It is a pertinent question to

explore whether such criteria can be found in dimensions d ≥ 3.

In [26], the author makes a connection between rigidity phenomena and mutual regularity and

singularity properties of Palm measures for very general point processes. E.g., for the zeros of the

standard planar GAF, it is shown that the Palm measures at two points z, w ∈ C, denoted resp. Pz,Pw,

are mutually singular for Lebesgue a.e.-pair (z, w). It is an interesting question to ask if this can be

extended to cover all pairs (z, w) with z 6= w, and if not, what is a description of the exceptional

pairs? On a broader scale, it is pertinent to ask similar questions for mutual singularity of Palm

measures in the generality considered in [26].
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