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We study the time evolution of the Luttinger model starting from a non-equilibrium state defined
by a smooth temperature profile T (x) equal to TL (TR) far to the left (right). Using a power series in
ε = 2(TR −TL)/(TL +TR), we compute the energy density, the heat current, and the fermion 2-point
function for all times t ≥ 0. For local (δ-function) interaction, the first two are computed to all
orders giving simple expressions involving the Schwarzian derivative of ∫

x

0 dx′ T (x′). For non-local
interaction, breaking scale invariance, we compute the non-equilibrium steady state (NESS) to all
orders and the evolution to first order in ε.

PACS numbers: 05.30.-d, 05.60.Gg, 71.27.+a, 75.10.Pq

Introduction. Experiments on ultracold atomic gases
have led to renewed interest in non-equilibrium proper-
ties of isolated 1D quantum systems [1–6]. This field also
has roots in a rich history of theoretical works studying
both classical [7–13] and quantum systems [14–23] out of
equilibrium. One often studied protocol is to join, at time
t = 0, disconnected left and right parts of an infinite sys-
tem, where each part is in thermal equilibrium with tem-
peratures TL and TR, respectively. For t > 0 the system is
evolved with a fully translational invariant Hamiltonian;
this produces a heat current and, for large times, the
system tends to a non-equilibrium steady state (NESS)
if TL ≠ TR. Properties of the NESS have been stud-
ied extensively numerically [24–26] and by approximate
analytical methods [27–30] in lattice models using this
scheme, and for certain integrable models in [31] using
hydrodynamics [32, 33]. Exact results for the NESS are
available only for conformal field theories (CFTs) [34–38]
and simple integrable models such as the XX spin chain
[39–42]. When written in terms of fermions, the latter
models are all non-interacting: they can be mapped to
1D systems of spinless fermions with Hamiltonians that
are quadratic in the fermion fields. There are otherwise
few exact results for the NESS, and even fewer for the
evolution, of interacting fermions; see, e.g., [43–49].

In this paper we present some exact results for the
full time evolution (not just the NESS) of a continuum
system of interacting fermions described by the Luttinger
model [50–53] on the real line starting, at t = 0, from a
non-equilibrium state defined by a smooth temperature
profile T (x). Specifically, if H(x) is the energy density
operator defining the Hamiltonian, H = ∫ dxH(x), then
the initial state is given by ρ̂ = e−G/Tr e−G with

G = ∫ dxβ(x)H(x), (1)

where β(x) ≡ T (x)−1 = β[1 + εW (x)] for some smooth
function W (x) with β the average inverse temperature
and ε the distance from equilibrium. We will mainly

be concerned with the case of a step-like profile T (x)
equal to TL (TR) far to the left (right), e.g., W (x) =

−(1/2) tanh(x/δ) with δ > 0, where β and ε are deter-
mined by β(∓∞) = T −1

L,R. The evolution of the system
is given by H, and we are interested in non-equilibrium
expectation values (ε ≠ 0) of local observables O,

⟨O(t)⟩ ≡ Tr ρ̂O(t), (2)

where O(t) = eiHtOe−iHt. If ε = 0, ⟨O(t)⟩ = ⟨O⟩β is an
equilibrium expectation value with temperature T = β−1.
For the Luttinger model, such equilibrium properties are
well-known since a long time from the celebrated exact
solution in [53] using bosonization; see also, e.g., [54–59].

Here we use a power series in ε to compute the time
evolution and the NESS for the Luttinger model both
in the case of local (δ-function) and non-local interac-
tion starting from a non-equilibrium state. Remarkably,
for local interaction, the series is convergent and can be
summed to give exact results at all times. However, when
compared with lattice models, this case cannot capture
important behavior at finite times due to short-distance
details. We therefore also consider the Luttinger model
with non-local interaction, breaking scale invariance, and
find that our finite-time results, computed to first order
in ε, exhibit dispersive effects that reproduce behavior
seen in numerical results for the XXZ chain [24, 27].

The following two methods are used to compute non-
equilibrium expectation values: M1 based on the Dyson
series [see (18)] and M2 using one-particle operators [see
(19)]. M2 can be used to compute results for the Lut-
tinger model to all orders in ε, while M1 is a general
method that allows for computation of non-equilibrium
results to first order in ε from equilibrium ones.

We consider the Luttinger model given by

H =∑
r
∫ dx ∶ψ+r (x) (−irvF∂x)ψ

−

r (x)∶ (3)

+λ∑
r,r′
∫ dxdy V (x − y) ∶ψ+r (x)ψ

−

r (x)∶ ∶ψ
+

r′(y)ψ
−

r′(y)∶
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for fermion fields ψ±r (x) with ψ+r (x) = ψ−r (x)
†, where

r = +(−) denotes right(left)-moving fermions, ∶⋯∶ indi-
cates Wick (normal) ordering, vF > 0 is the Fermi veloc-
ity, V (x) is the interaction potential, and λ is the cou-
pling constant [49, 53]. Let V̂ (p) = ∫ dxV (x)e−ipx. The

interaction must satisfy λV̂ (p) > −πvF /2, and V (x) can
be local, V (x) = πvF δ(x)/2, which requires renormaliza-
tions [60], or non-local with interaction range a > 0, e.g.,
V (x) = πvF /[4a cosh(πx/2a)] [47, 49, 53, 60]. The above
examples of potentials are used in Figs. 1 and 2 to illus-
trate our analytical results, but we emphasize that these
results hold true for a large class of interactions [49, 60].

In what follows we study the evolution of the en-
ergy density E(x, t) ≡ ⟨H(x, t)⟩, the heat current den-
sity J(x, t) ≡ ⟨J (x, t)⟩, and the fermion 2-point function
Sr(ξ, τ, x, t) ≡ ⟨ψ+r (x + ξ, t + τ)ψ

−

r (x, t)⟩, where J (x, t)
is determined by the continuity equation ∂tH(x, t) +
∂xJ (x, t) = 0. Our main focus is on results at finite
times, but we start with the NESS since it serves as a
useful benchmark.

NESS. It is well-known [53] that the Fourier modes of
the fermion densities, ρr(p) ≡ ∫ dx ∶ψ+r (x)ψ

−

r (x)∶ e
−ipx,

define boson operators, and that the Luttinger Hamilto-
nian can be written as H =H+ +H− with

Hr =
1

2
∫ dq v(q) ∶ρ̃r(−q)ρ̃r(q)∶ (4)

using Bogoliubov transformed fermion densities ρ̃r(p) =
ρr(p) coshϕ(p) − ρ−r(p) sinhϕ(p), where tanh 2ϕ(p) =

−λV̂ (p)/[πvF + λV̂ (p)], and the renormalized Fermi ve-

locity v(p) = vF

√

1 + 2λV̂ (p)/πvF [49, 53, 61]. The ρ̃r(p)
are commonly referred to as plasmons and the Luttinger
Hamiltonian is diagonal in terms of these [53]. To find the
NESS we write ρ̂(t) = e−iHtρ̂eiHt = e−G(−t)/Tr(e−G(−t))
with G(t) = ∫ dxβ(x)H(x, t) and express H(x, t) in
terms of ρ̃r(p, t) = ρ̃r(p)e

−irω(p)t where ω(p) = v(p)p.
Taking t → ∞ in ρ̂(t) by making use of the Riemann-
Lebesgue lemma (cf., e.g., [49]), which can be justified
for expectation values using M2, we find

lim
t→∞

Tr ρ̂(t)O =
Tr e−β+H+−β−H−O

Tr e−β+H+−β−H−
(5)

with β± = T
−1
L,R. This NESS describes a translation invari-

ant state factorized into right- and left-moving plasmons
at equilibrium with temperatures T± = 1/β±. A similar
NESS has been obtained in CFT [34–36] and for the XX
chain [39–42]; in the latter case the same factorization of
the NESS is valid also in terms of right- and left-moving
fermions, whereas in our case only the plasmons factorize
in such a way but not the fermions.

The long time limit of expectation values for all local
observables can be computed using (5) by straightfor-
ward generalizations of well-known equilibrium compu-
tations. By recalling that ∫ dxH(x) = ∑rHr with Hr

in (4) and using the continuity equation to show that

∫ dxJ (x) = 1
2 ∑r r ∫ dq

dω(q)
dq

v(q) ∶ρ̃r(−q)ρ̃r(q)∶ , we ob-
tain

lim
t→∞

E(x, t) = wλ +∑
r
∫
R+
dq

2π

ω(q)

eβrω(q) + 1
,

lim
t→∞

J(x, t) =∑
r

r∫
R+
dq

2π

dω(q)

dq

ω(q)

eβrω(q) + 1

(6)

since the NESS is translation invariant, where wλ is the
ground state energy density [49, 53]. Similarly, for the
fermion 2-point function, using the well-known bosoniza-
tion formula expressing fermions as exponentials of plas-
mons [49, 58, 60], we find

lim
t→∞

Sr(ξ, τ, x, t) =
i

2πur
exp(∫

R+
dq

q
{eiqur(q)−eiqur})

× exp(∫
R+
dq

q
sinh2 ϕ(q){eiqur(q) + eiqu−r(q) − 2e−q0

+
})

× exp(∫
R+
dq

q
[cosh2 ϕ(q)

2{cos(qur(q)) − 1}

eβrω(q) − 1

+ sinh2 ϕ(q)
2{cos(qu−r(q)) − 1}

eβ−rω(q) − 1
]), (7)

where ur(p) ≡ r[ξ − rv(p)τ] + i0
+ and ur = ur(0).

The second integral in (6) gives the final energy flow
and seems at first to depend on the interaction. However,
by the change of variables u = βrω(q) we obtain

lim
t→∞

J(x, t) =∑
r

r
πT 2

r

12
=
π

12
(T 2
L − T

2
R) ≡ J (8)

due to the presence of the group velocity dω(q)/dq in the
integrand (assuming dω(q)/dq > 0, which is true for a
large class of interaction potentials [49]). It follows that
the final heat current only depends on TL,R and is inde-
pendent of microscopic details. Such universal behavior,
previously observed in CFTs [34–36], thus remains true
even when scale invariance is broken.

The first integral in (6) expresses the energy density
in the NESS as a sum of energy densities at equilibrium
with temperatures TL,R and is non-universal. Indeed,
it depends on the interaction, and only in the local case,
when v(p) = v and ϕ(p) = ϕ are constant, does it simplify
to

lim
t→∞

E(x, t) =∑
r

π

12v
T 2
r =

π

12v
(T 2
L + T

2
R) (9)

after an additive renormalization corresponding to sub-
tracting the (diverging) constant wλ. Similarly, the 2-
point function in the local case, after a multiplicative
renormalization of the fermion fields (not needed in the
non-local case) [60], becomes

lim
t→∞

Sr(ξ, τ, x, t)

=
1

2π ˜̀
(

iπTr ˜̀/v

sinh(πTrur/v)
)

1+η/2

(
iπT−r ˜̀/v

sinh(πT−ru−r/v)
)

η/2

,

(10)
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where ur = r[ξ − rvτ]+ i0
+, with the equilibrium anoma-

lous exponent η = 2 sinh2 ϕ and a length parameter ˜̀ due
to the renormalization [53, 60]. Clearly, unless η = 0, the
NESS does not factorize into right(left)-moving fermions
with temperatures TL (TR) as for the XX chain.
Finite-time results: local interaction. In this case the

Luttinger model is conformally invariant, implying that
H(x, t) and J (x, t) satisfy the wave equation, and thus

E(x, t) =
1

2
[G(x − vt) +G(x + vt)] ,

J(x, t) =
v

2
[G(x − vt) −G(x + vt)]

(11)

for some function G(x). Using M2, G(x) can be com-
puted as a power series in ε to all orders [see (21)], and, af-
ter summation, we obtain the following remarkably sim-
ple result:

G(x) =
π

6v

1

β(x)2
+

v

12π

⎛

⎝

β′′(x)

β(x)
−

1

2
(
β′(x)

β(x)
)

2
⎞

⎠

=
π

6v
T (x)2

−
v

12π
(Sg)(x)

(12)

using the Schwarzian derivative S of the function g(x) =

∫
x

0 dx′ T (x′). Thus, in the case of a non-uniform temper-
ature profile, E(x, t) and J(x, t) also depend on the first
and second derivatives of T (x) (but not on higher-order
ones). This is true even at t = 0.

The evolution of the energy flow can be studied exactly
using (11) and (12). For a step-like β(x) = β[1+ εW (x)]
with W (x) = −(1/2) tanh(x/δ), as in the introduction,
the energy profile at t = 0 away from x = 0 is proportional
to the local temperature, i.e., E(x,0) = π

12v
T 2
L,R far to the

left and right. In the transition region, for small δ > 0 and
ε ≠ 0, there is a peak; see Fig. 1(a). Such a peak seems
to be a general feature of a steep change in temperature,
and by a computation to first order in ε using M1 we
found that it is present also in the XX chain.

As t increases a region develops around the origin with
a uniform energy density bounded by two fronts moving
ballistically to the right (left) with constant velocity v
(−v); see Fig. 1(b). For local interaction the fronts are
rigid (the shape does not change with time). In the same
region the current has a non-vanishing value. For large
times we recover the NESS results in (8) and (9).
Finite-time results: non-local interaction. In lattice

models, such as the XX and XXZ spin chains, dispersion
effects lead to ballistically moving fronts that are non-
rigid (the shape changes with time). Such effects can be
captured by the Luttinger model with non-local inter-
action since the velocity v(p) depends on momenta. In
this case we compute results only to first order in ε using
M1. Comparison with our all-order results for the NESS
and for finite times in the local case suggests that such
first-order approximation works well for small ε: e.g., for
ε = −0.01 used in Figs. 1 and 2, the first- and all-order

−1 0 1

−2

−1

0

1

2

x
`

e(x, 0)

Non-local

Local

XX

(a) At t = 0

−1 0 1−1

0

1

2

x
`

e(x, t) at t = 0.40`/v

−1 0 1−1

0

1

2

x
`

e(x, t) at t = 1.00`/v

(b) Evolution for t > 0

Figure 1. Plots of analytic results for the energy density
e(x, t) = v(E(x, t)−E0)/J in an interval [−`, `] around x = 0 at
times (a) t = 0 and (b) t > 0 for the Luttinger model with local
and non-local interaction and for the XX chain. The results in
the local case are given by (11) for V (x) = πvF δ(x)/2 and in
the non-local case by (13) for V (x) = πvF /[4a cosh(πx/2a)].
The XX chain is considered close to half filling and for ex-
change interaction such that the zero mode of the group ve-
locity is v. The parameters are β = 10, ε = −0.01, δ = a = 0.01`,
λ = 0.5, and vF = 1. The value of ε is small enough that all
O(ε2)-corrections are negligible.

results in Fig. 1(a) are practically indistinguishable and
the differences seen in Figs. 1(b) and 2 between local and
non-local interactions can be fully attributed to disper-
sive effects.

For the energy density and the heat current we obtain

E(x, t) = E0 + εE1(x, t) +O(ε2),

J(x, t) = εJ1(x, t) +O(ε2),
(13)

where E0 is equal to limt→∞E(x, t) in (6) for β+ = β− = β,

E1(x, t) = −∑
r,r′
⨏
R

dp

2π
∫
R

dq

4π
Ŵ (p)A(p − q, q),

J1(x, t) = −∑
r,r′
⨏
R

dp

2π
∫
R

dq

4π
Ŵ (p)

i

p

∂

∂t
A(p − q, q)

(14)
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with

A(p, p′) = ei(p+p
′
)x−i[rω(p)+r′ω(p′)]t

×
[rv(p) + r′v(p′)]2

4v(p)v(p′)

[re2ϕ(p) + r′e2ϕ(p′)]2

4e2[ϕ(p)+ϕ(p′)]

×
eβ[rω(p)+r

′ω(p′)] − 1

rω(p) + r′ω(p′)

rω(p)

eβrω(p) − 1

r′ω(p′)

eβr′ω(p′) − 1
.

Similarly, for the 2-point function, we obtain

Sr(ξ, τ, x, t) = ⟨ψ+r (ξ, τ)ψ
−

r (0,0)⟩βe
εB1;r(ξ,τ,x,t)+O(ε2),

(15)
where ⟨ψ+r (ξ, τ)ψ

−

r (0,0)⟩β is equal to (7) for β+ = β− = β,

B1;r(ξ, τ, x, t) = − ∑
r1,r2
⨏
R
dp∫

R

dq

4π
Ŵ (p)C(p− q, q) (16)

with

C(p, p′) = ei(p+p
′
)x−i[r1ω(p)+r2ω(p

′
)]t

× [θ(−rr1r2p)θ(rp
′
) + θ(rr1r2p)θ(−rp

′
)]
v(p) + v(p′)

2

× cosh(ϕ(p) − ϕ(p′))
eβr[ω(p)+ω(p

′
)] − 1

r[ω(p) + ω(p′)]
F r1r (p)F r2r (p′)

and F r
′

r (p) = e−ϕ(p)+rr′eϕ(p)
2

eipr
′ur′ (p)−1

eβrω(p)−1
. The above results

agree, to first order in ε, with (6) and (7) in the long time
limit.

As t increases a region develops around the origin with
a uniform energy density bounded by two ballistically
moving non-rigid fronts; see Fig. 1(b). In Fig. 2 we plot
the current through x = 0. The results in the non-local
case show transient oscillations that look qualitatively
similar to numerical simulations for the XXZ chain, see,
e.g., Fig. 1 in [24] and Fig. 3 in [27], while in the local
case there is only a single peak due to the second term
in (12).
Methods. Our results are based on rigorous bosoniza-

tion methods well-known from studies of the Luttinger
model in equilibrium; see, e.g., [49, 53, 58, 60]. We work
on the circle −L/2 ≤ x ≤ L/2 of length L > 0 with the
fermion fields ψ±r (x) satisfying anti-periodic boundary
conditions and take the thermodynamic limit L → ∞

only after computing expectation values for finite t ≥ 0.
The order, first L→∞ and then t→∞, is important for
computing results in the long time limit [34, 49].
M1: To compute ⟨O⟩ we write G in (1) as β(H +W)

withW = ε ∫ dxW (x)H(x) and use the fact that U(β) ≡
eβHe−β(H+W) satisfies

∂βU(β) = −eβHWe−β(H+W)
= −W(β)U(β) (17)

with W(β) = eβHWe−βH . Solving this by iteration we
obtain a series expansion in ε (the Dyson series):

⟨O⟩ = ⟨O⟩β − ε [⟨CO⟩β − ⟨C⟩β⟨O⟩β] +O(ε2) (18)

0.05`/v 0.10`/v

0

1

2

3

t

j(0, t) π
12

[T (−vt)2 − T (vt)2]

Non-local

Local

XX

Figure 2. Plots of analytic results for the heat current j(0, t) =
J(0, t)/J through x = 0 for the Luttinger model and the XX
chain corresponding to the results in Fig. 1 and using the
same parameters. Also included is the local case without the
second term in (12) (black dotted line).

with C = ∫
β

0 dβ′ ∫ dxW (x)H(x,−iβ′). Using this method
non-equilibrium expectation values are expressed as sums
of equilibrium ones. We thus note that it can be used for
computing non-equilibrium results to first order in ε for
any model where equilibrium results are computable.

M2: Higher-order terms can be computed using gen-
eral mathematical results for quasi-free models; see, e.g.,
[62]. For the bosonized Luttinger Hamiltonian we write
H = dΓ̂(K) to mean boson second quantization of the
one-particle operator K, and similarly W = dΓ̂(W ) for
some W . (We note that the second quantization map dΓ̂
is in a non-trivial representation of the boson field alge-
bra and that there are certain technical requirements on
the one-particle operators [62, 63] that are fulfilled in the
cases of interest to us.) For O = dΓ̂(O) it is possible to
show that ⟨O⟩ can be written as [62]

Tr(e−βdΓ̂(K+W )dΓ̂(O))

Tr(e−βdΓ̂(K+W ))
=

Tr(e−βdΓ̂(K)dΓ̂(O))

Tr(e−βdΓ̂(K)

+
∞

∑
n=1

1

β
∑
ν

tr([iν −K]
−1

(W [iν −K]
−1

)
nO), (19)

where tr is the one-particle trace and ∑ν is over all boson
Matsubara frequencies ν ∈ (2π/β)Z. Using this we find
(11) with G(x) = ∑

∞

n=0 ε
nGn(x), where G0(x) = π/6vβ

2

is the equilibrium result and

Gn(x) = ∫
Rn+1

dp0 . . . dpn (
n−1

∏
j=0

Ŵ (pj − pj+1))

×∑
r

1

β
∑
ν

(
n

∏
j=0

rvpj/2

iν − rvpj/2
)ei(p0−pn)rx (20)

for n > 0. While this formula can be generalized to non-
local interaction, the local case is special in that it is
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possible to compute the integrals exactly, giving

Gn(x) = (−1)n(
(n + 1)π

12vβ2
W (x)n (21)

−
v

24π
[W ′′

(x)W (x)n−1
+
n − 1

2
W ′

(x)2W (x)n−2
])

for n > 0. Summing this series yields (12).
Conclusions. We computed the NESS and the evo-

lution of the Luttinger model starting from a non-
equilibrium state defined by a smooth non-uniform tem-
perature profile using bosonization. For local interaction
(and thus a priori for the non-interacting case) we gave
simple exact formulas for the time-dependent energy den-
sity and the heat current. These were obtained using a
convergent series in the distance from equilibrium ε, com-
puted to all orders and summed. The 2-point function
was computed to first order in ε. For non-local interac-
tion all finite-time results were computed to first order
in ε and were found to reproduce behavior observed in
numerical simulations for the XXZ chain and to agree
with the exact NESS in the long time limit. The latter
truncated expansion can be seen as a linear-response ap-
proach, and it can, in principle, be used even for systems
that are not exactly solvable.

It is worth noting that our result in (11) and (12) has
the form of a conformal transformation. It is thus tempt-
ing to speculate that the expectation values of other local
observables at finite times in the local case can also be
obtained by this conformal transformation. It would be
interesting to check this using the methods developed in
this paper.
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(2015).
[36] D. Bernard and B. Doyon, J. Stat. Mech. (2016) 064005.
[37] S. Sotiriadis and J. Cardy, J. Stat. Mech. (2008) P11003.
[38] S. Hollands and R. Longo, arXiv:1605.01581 (2016).
[39] T. G. Ho and H. Araki, Tr. Mat. Inst. Steklova 228, 203

(2000).
[40] W. H. Aschbacher and C.-A. Pillet, J. Stat. Phys. 112,

1153 (2003).



6

[41] Y. Ogata, Phys. Rev. E 66, 016135 (2002).
[42] Y. Ogata, Phys. Rev. E 66, 066123 (2002).
[43] M. A. Cazalilla, Phys. Rev. Lett. 97, 156403 (2006).
[44] A. Iucci and M. A. Cazalilla, Phys. Rev. A 80, 063619

(2009).
[45] J. Rentrop, D. Schuricht, and V. Meden, New J. Phys.

14, 075001 (2012).
[46] C. Karrasch, J. Rentrop, D. Schuricht, and V. Meden,

Phys. Rev. Lett. 109, 126406 (2012).
[47] V. Mastropietro and Z. Wang, Phys. Rev. B 91, 085123

(2015).
[48] M. A. Cazalilla and M.-C. Chung, J. Stat. Mech. (2016)

064004.
[49] E. Langmann, J. L. Lebowitz, V. Mastropietro, and

P. Moosavi, Commun. Math. Phys. 349, 551 (2017).
[50] S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).
[51] W. Thirring, Ann. Phys. 3, 91 (1958).
[52] J. M. Luttinger, J. Math. Phys. 4, 1154 (1963).
[53] D. C. Mattis and E. H. Lieb, J. Math. Phys. 6, 2304

(1965).

[54] F. D. M. Haldane, J. Phys. C: Solid State Phys. 14, 2585
(1981).

[55] T. Giamarchi, Quantum Physics in One Dimension (Ox-
ford University Press, 2004).

[56] A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik,
Bosonization and Strongly Correlated Systems (Cam-
bridge University Press, 1998).

[57] P. Kopietz, Bosonization of Interacting Fermions in Ar-
bitrary Dimensions (Springer, 1997).

[58] R. Heidenreich, R. Seiler, and D. A. Uhlenbrock, J. Stat.
Phys. 22, 27 (1980).

[59] A. E. Mattsson, S. Eggert, and H. Johannesson, Phys.
Rev. B 56, 15615 (1997).

[60] E. Langmann and P. Moosavi, J. Math. Phys. 56, 091902
(2015).

[61] J. Voit, Rep. Prog. Phys. 58, 977 (1995).
[62] H. Grosse and E. Langmann, J. Math. Phys. 33, 1032

(1992).
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