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Abstract

Boltzmann defined the entropy of a macroscopic system in a macragtate the log of the volume of phase space
(number of microstates) correspondingMb This agrees with the thermodynamic entropy of Clausius wHespecifies
the locally conserved quantities of a system in local thermal equilibrium (LTE). Here we discuss Boltzmann’s entropy,
involving an appropriate choice of macro-variables, for systems not in LTE. We generalize the formulas of Boltzmann
for dilute gases and of Resibois for hard sphere fluids and show that for macro-variables satisfying any deterministic au-
tonomous evolution equation arising from the microscopic dynamics the corresponding Boltzmann entropy must satisfy an
H-theorem.
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1. Introduction

Thermodynamics associates to isolated equilibrium macroscopic systems with specified thermodynamic param-
etersM an additive, macroscopically well defined, entrdfgy/). The second law of thermodynamics then asserts
that in any temporal change occurring in such isolated systems (due e.g. to the relaxation of some constraint) the
new equilibrium state, with parametevg, must satisfyS(M’) > S(M). S(M) as well as the second law naturally
generalize to an entrooc.eq (M) = Sioc.eq ({M(X)}) for systems in local thermal equilibrium (LTE) with particle,
momentum and energy densities varying slowly (on a microscopic scale) in space anidimg(M) increases
with time whenM (x) evolves toM, (x) according to macroscopic hydrodynamical equat{ar®]. This is reviewed
briefly in Section 2

We then discuss i®ection 3Boltzmann’s microscopic interpretation M) as the log of the volume of phase
space associated td. This not only provides a formula for computirfigd/) microscopically, but also explains
the origin of the time-asymmetric second law in the time-symmetric microscopid&#sIt shows in particular
that if there is a deterministic autonomous equation describing the time evolution of a macrfhstétn isolated
system, be it hydrodynamic or kinetic, e.g. the Boltzmann equation, it must gis&Mdy) which is monotone
non-decreasing in
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Boltzmann’s macroscopic formulation leads naturally to a formula for the entropy of dilute gases which may
be far from LTE. For such systems the macrostMemay be specified byf(x,Vv), the density of gas
particles in the six-dimensional one-particle phase space. Boltzmann showed that this &gt0fly, increases
with time when f; evolves according to the Boltzmann equatick-theorem)[3-5]. This is discussed in
Section 4

In Section Swve give a formulafoS(f; E), the log of the phase space volume of a general system whose macrostate
is specified byf(x, v) and the total energ¥. This reduces tSgad /) for a dilute gas and t6hs( f) for a system of
hard spheresshs(f) was found by Resiboi$] to satisfy ar#{-theorem whery evolves according to the (modified)
Enskog equation for a system of hard spheres. We note that the general argument given by Boltzmann for the origir
of the second law suggests th&tf;, E) should be monotone in time even ff does not satisfy an autonomous
evolution equation. This is discussed furtheSiection 6

Section 7consists of some remarks comparing and contrasting Boltzmann’s definition of the entropy of a macro-
scopic system with other definitions of entropy. We raise, but do not resolve, the question of the appropriate choice
of macrostates for general non-equilibrium systems.

The article is written in an informal style describing the ideas and facts (not necessarily in the right historical
order) we think important for understanding the notion of the entropy of a macroscopic system, made up of a very
large number of atoms or molecules. We restrict ourselves to isolated classical systems, assume familiarity with
the basic notions of thermodynamics and statistical mechanics, and omit many details (including units, boundary
conditions, etc.). We refer the interested readgri@nd references therein.

2. Clausius’ macroscopic entropy

Rudolf Clausius’ 1865 papd8] concludes with his celebrated “two fundamental theorems of the mechanical
theory of heat”: (1) the energy of the universe is constant and (2) the entropy of the universe tends to a maximum.
These express in succinct form what is generally referred to as the first and second law of thermodynamics; see
[3,4] for their interesting history.

The first law needs no elaboration. The existence of a conserved energy for isolated systems goes back to Newto
for mechanical systems. The experiments of Joule then showed that thermal phenomena are subject to the sanm
mechanical laws.

The second law, on the other hand, which contains the newly coined word entropy, does need elaboration. Let
us quote Lars Onsagf9]: “The second law of thermodynamics forbids perpetual motion of the second kind and
implies the existence of a definable entropy for any system in a state that can be reached by a succession of reversib
processes. These “thermodynamic” states are typically defined as states of “equilibrium” under specified restraints
on composition, energy, and external boundary conditions, in the sense that no spontaneous change can occur |
the system as long as the constraints remain fixed.” The implicit “restraints” exclude chemical or nuclear reactions
which would change the species present, etc.

As put in the textbooks, e.ffl]: given an equilibrium system with ener@yand mole (or particle) numbeksin
a spatial regiorV, with a volume which we shall also denote Bythere exists a functiofi(E, N, V) such that in a
reversible process

_ [dE-I—pdV—ZMJ'de]
B T

ds , 1)

whereT is the absolute temperature the pressure and; the chemical potential of specigsThe terms in the
square bracket just give the amount of heat added to the system in a reversible process.
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Thermodynamics further states that the entropy of two isolated macroscopic systems, each in equilibrium, with
their own energies, mole numbers and volumes, is the sum of their individual entropies, i.e.

S1,2(E1, N1, V1 - E2,Np, Vo) = S1(E1, N1, V1) + S2(E2, N2, V2). (2

Suppose now that these two systems are permitted to interact and exchange energy over some period of time
after which they are again isolated. Then, according to the first law, their new enérgisd £, will satisfy

E| + E, = E1 + E>. If we now wait until each of the systems comes to equilibrium then, according to the second
law, their combined new entropy must satisfy the inequality,

S1.0 = S1(Eq, N1, V1) 4 S2(E, N2, V2) > S1.2 = S1(E1, N1, V1) 4 S2(E2, N2, Va). 3

Similar inequalities hold when relaxing other constraints. As an extreme example imagine that initially system 1
contained a mixture of hydrogen and oxygen at a low temperdtyneith an implicit constraint prohibiting their
chemical reaction, while system 2 was at a high temperaturdhe final state could now be very hot steam in
system 1, with a temperatui@ higher than the temperatufg in system 2, e.gT} > T, > T2 > Ti.

In all casesijf the two systems have come to a joint equilibrium at the end of this period of interaction, with
possibly newN’, thenE; and E;, must be such that the new entropy satisfies

S1(E, N1, V1) + S5(Eo, Np, Vo) = S, = USUIEJ {S1(U1, N, V1) + S2(U2, N, V2)} 4
1,V2

subject only to energy conservatidiy + U2 = E1 + E2. This implies

381 -t 3S2(E), Ny, Vo)
Tiz[—(Ea, 1 vo} =T§z[— : ()
IE} IE,

Similar relations hold when there can be an exchange of matter or volume between the systems.
Using the fact that for macroscopic systems surface areas (multiplied by a suitable microscopic length) and surface

energies are negligible compared to the corresponding bulk quantities, the additivity of the entropy, expressed by
(2), also gives extensivity. That is, for systems uniform in the bulk,

S(E,N, V) = Vs(e, n), (6)

wheree = E/V andn = N/ V.

The thermodynamic entropy can now be extended to a system if1,2ZE a system in a volum& which can
be considered, to a good approximation, as being locally in equilibrium with energy de@sityarticle density
n(x) and hydrodynamic velocity(x): for a precise definition sg@0]. For such systems we can, by extension of
(6), write

Sioceq(m, U, e) = /

S (e(x) — %mn(x)uz(x), n(X)) dx, (7)
wherem is the mass (per mole) and we consider just one component for simglieif?]. (The “mechanical’
energy associated witlh(x) does not contribute t8 until it is dissipated and we always takgn(x)u(x) dx =0.)
Eq. (7)clearly agrees witli6) when the system is in true equilibrium,= 0, ande andn are independent of.
Furthermore, if a LTE state evolves in time according to macroscopic equation§dhgpmustincrease (or at least
not decrease) as a functionrofConsider for example an isolated system in LTE (with- 0 andn constant) with
an energy density profiley(x) and corresponding temperature profitgx) for which we have, using an extension

of (1) to continuous time,

s v-J J 1
EZ_T:_v(?)Jﬁ]-V(?), (8)
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whereJ is the heat fluxJ/ T is the entropy flux, and - V(1/7) is the entropy production. According to Fourier’s
law, J = —K(T) VT so(8) can be written in the more familiar form as

d
CvDZ TX =V [K(DVT], ©)

whereCy (T) = T~1(ds(T)/dT) is the specific heat arid is the heat conductivitfq. (9)is to be solved, for > 0,
subject to no heat flux, & T = 0, at the surface of. Integrating(8) or (9) then yields

2
dr dr Jy % T 4 r

Ast — oo, T(x,t) — T, for all x € V, with T determined by energy conservation ait.eq approaches its
maximum (equilibrium) valu&/s(e, n).

The second law thus manifests itself for LTE by the requirement that the entropy prodiictiénl/ 7) be
non-negative, i.e. tha€(7) > 0. The formula for entropy production generalizes to other macroscopic equations
[2,12], e.g. to the compressible Navier—Stokes equations which describe the time evolution®fu(x, 1) and
e(x, ). The Euler equations, on the other hand, consSpgg, in the absence of singularities of the flow. They
do not give an approach to equilibrium of an isolated system and thus do not provide a description valid for times
over which such an approach takes place. In the presence of shocks, however, the solutions are non-unique and tt
requirement tha$joc eq increase picks out the correct evolution.

3. Boltzmann’s microscopic entropy

There are many ways to stretch the notion of LTE and apply the second law to processes taking place in system:
which are clearly very far from equilibrium, e.g. living organisf8®]. These ad hoc extensions work quite well in
the hands of seasoned practition®jsbut are far from systematic. It would certainly be desirable to find systematic
ways for defining and calculating the entropy, expressed as a function of the appropriate macroscopic variables of
systems that are not in LTE. This entropy would be monotone in time and coincid§yitg for a systemin LTE.

This is exactly what was accomplished by Boltzmann’s microscopic interpretation of the macroscopic Clausius
equilibrium entropyS(M). This interpretation provides a formula for the computatiofi@f) from the microscopic
Hamiltonian. Even more importantly, it explains the origin of the time-asymmetric second law in the time-reversible
dynamics of the atoms and molecules which are the microscopic constituents of macroscopic matter, and shows it:
applicability to systems not in LTE. We will be very brief hdie-14].

A very good summary of Boltzmann’s accomplishment is given by this quote from Eij&&jirfOn the basis
of the kinetic theory of gases Boltzmann had discovered that, aside from a constant factor, entropy is equivalent to
the logarithm of the “probability” of the [macro]state under consideration. Through this insight he recognized the
nature of the course of events which, in the sense of thermodynamics, are “irreversible”. Seen from the molecular-
mechanical point of view, however, all courses of events are reversible. If one calls a molecular-theoretically defined
state a microscopically described one, or, more briefly, microstate, then an immensely large (Zindiestates
belong to a macroscopic conditiarithen is a measure of the probability of a chosen macrostate. This idea appears
to be of outstanding importance also because of the fact that its usefulness is not limited to microscopic description
on the basis of mechanics.”

Let us make Einstein’s remarks more explicit by considering a classical systdhpafticles in a box/. Its
microstateX is given by a pointin the & dimensional phase space which specifies everything about the system, e.g.
the energy given by its Hamiltoniati(X), etc. WhenV is very large a more appropriate coarse-grained description
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of the system is provided by its macrostafe We can specifyM, for example, by dividing/ into J cubesAy,

J <« N, so that each cube contains a very large number of particles, and specifying coarse-grained values of the
energy, momentum and number of particles in eaghLet I'y; be the region of the phase space consisting of all
microstates consistent witlf, i.e. the set of allX such that the appropriate phase space funddgX) = M. Let

|y | be the volume of ", in appropriate units (this is Einsteinkfor a classical system). Boltzmann defined the
entropy of a macroscopic system with microstitby

S8(X) = klog| Mmcx)l- (11)

Boltzmann then showed for a gas in an equilibrium macrosadg, which, for the above choice af, corresponds
to a uniform density of the macro-variables¥n that Sg agrees (to leading order iN) with the thermodynamic
entropy of Clausius. The same is true for LTE states, i®(iX) = {n(X), u(x), e(x)} thenSg(M) = klog|I'yx)| =
Sioc.eq (1, U, ). This means that if the entropi§g (M) > Sg(M’) differ by a macroscopic amount, the ratio of their
corresponding phase space volumes is exponentially larye Trhus if the system contains one mole of material,
the ratio of|I'y,,| to [I'v| for a macrostaté/ in which all the particles are in the left half of the box is of order
exp[1FY]. This is far larger than the ratio of the volume of the known universe to the volume of one proton.

Boltzmann then argued that given this disparity in sizeg)gffor different M’s, the time evolved, = M(X;)
will be such that 'y, (X;)| and thusSg(X;) will typically increase in accord with the second law. By “typically”
we mean that for any’, (of the kind described above) the relative volume of the set of microsktas, for
which the second law is violated by a macroscopic amount, i.e. by an amount proportidhaltaing any fixed
time period (not bigger than the age of the universe), goes to zero rapidly (exponentially) in the number of atoms
and molecules in the system.

In fact let us consider the case whevg satisfies an autonomous deterministic evolution, Egy. (9) This
means that if that evolution carridg,, — M,,, then the microscopic dynamid carriesFMt1 inside FMIZ, i.e.
-1 m,y C Iy with negligible error. Now the fact that phase space volume is conserved by the Hamiltonian
time evolution (Liouville’s theorem) implies thaFM,1| < Ty, | and thus by(11) that Sg(M,,) > Sg(M;,) for
t> > t1. We have thus derived afi{-theorem” for any deterministic evolution of the macro-variables arising from the
microscopic dynamics. The explicit form for the rate of chang&gh;) (including strict positivity) depends on the
detailed macroscopic evolution equation. The fact fhat, essentially coincides for largé with the whole energy
surfaceH(X) = E alsoexplains the evolution towards and persistence of equilibrium in an isolated macroscopic
system.

The emergence of definite time-asymmetric behavior in the observed evolution of macroscopic systems, despite
the total absence of such asymmetry in the microscopic dynamics, is thus a consequence of the great disparity
between microscopic and macroscopic scales, together with the fact (or very reasonable assumption) that what we
observe in nature is typical behavior, corresponding to typical initial condifigns

4. Going beyond LTE: dilute gases

As is clear fromEq. (11) the choice of the macro-variabl@$ is essential for the computation 8§(X). For
equilibrium systems or those in LTE these are specified by thermodynamics although there is a large leeway in
choosing the sizes of the boxes, if we consider only leading terms iN. They are the locally conserved and
hence microscopically slowly varying quantities—precisely those for which one has hydrodynamic type autonomous
equations.

To obtain useful quantitative information from the second law for systems not in LTE one has to find appropriate
macro-variables/ for the system under consideration, e.g. those which satisfy autonomous time evolution equations,
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and for which one can compusg (M). A paradigmatic example of where this has been achieved is a dilute gas.
Following Boltzmann, we refine th&/ considered in the last section for a systemAofarticles in a boxV.

This is done by noting that the microstate= {r;,v;},i = 1,..., N, can be considered as a setfpoints in
six-dimensionaj.-space, somewhat analogous to positigmsin V c R3. We may then divide up thig-space
space intd/ cellsA,, centered olr, V), of volume| A, |. A macrostated is then specified by the (coarse-grained)
number of particles in each,,

M={Ny}, a=1...,]<N. (12)

For dilute gases one cameglect, for typical configurations, the existence of interactions between the particles,
although of course they still play a role in the dynamics now described by a succession of collisions between pairs
of particles[3-5]. Under these conditions the coarse-grained energy of the system in th&/statgven by

1
>m D NoVi =, (13)

> Ny=N. (14)

We do not therefore need to specify the energy separately and the phase space volume associated willh such an
is then readily computed to ljéb]

1Tl = [ J(Nah ™M Ae ™, (15)

where we do not distinguish between configurations in which particle labels are interchanged. For large\enough
and a judicious choice of thigl,} we can, for almost alk consistent with(13) and (14)use Stirling’s formula in
(15) and obtain

- N, Ny \ -~
SB(M)~—k{Z(ma'IoglAa')MM—N}. (16)

Using M we can associate with a typical a coarse-grained densiffy ~ N./|Aq| in u-space, i.e. such that
Ny = an dx dv fx(x, V). EQ. (16)then shows that, up to a constant (dependingVdnthe Boltzmann entropy
Sg(X) is given by the negative of Boltzmanr#s-function,

Sgad ) = —k/ dx/ dv f(x, v) log f(x, V), a7
v R3

where f = fx. (We shall drop the subscrigf unless we want to emphasize théts associated with a given
microstateX.) The maximum ofSga« f) over all f which satisfy the conditions,

/ dx/ dvf(x,v) = N, (18)
v R3
1

/dx/ dv —mv°f(X,v) = E (29)

v Jrz 2
is given by the equilibrium distribution

N [ 27kT\ /2 mv2
fa=y (50) oo (20)

wherekT = 2/3(E/N). feqcoincides of course with the densif (x, v) obtained for a typical microstaté on
the energy surfac#(X) = E whenN is macroscopic (with deviations going to zeroMds—> oo).
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When f # feqthen f and consequentl§yad f) will change in time. The microscopic version of the second law,
discussed irSection 3 now says that typicak € I'j, at the initial timet = 0, will have anM, = M(X,) with
the property thasg (M (X,)) > Sg(M (X)), fort > ¢'. This means thafx, (X, v) = f;(x, v) has to be such that
Sgad f1) = Sgad fr), fort > ¢'. This is exactly what happens for a dilute gas for which the time evolutigi(®fv)
is well described by the Boltzmann equation (B85] which we shall not write out here: s¢b4] for a rigorous
derivation of the BE under suitable conditions. As shown by Boltzmann, in his fafdebsorem, itindeed follows
from the BE that(d/df) Sgad( f7) > O, with equality holding only wherf(x, v) is a local Maxwellian}(v; n,u, 7
(5]

—3/2 _ _ 2
N [Zn::’(x)} exp{ m[v — u(x)] }

f=nX) KT (21)

Eq. (21)defines LTE for a dilute gas with the(x), u(x) ande(x) obtained fromy in the usual wayp =
Jrs fAv,ux) = [vfdv/n, KT(X) = (2/3)[e(x) — (1/2)mn(x)u?(x)]/n(x). When(21)is substituted int¢17) we
obtain

Sgad ) = /V X sqade, 1) (22)
with
sgas(e, n) = k{3nlog(KT) — n(logn — 1)} + const, (23)

the Clausius entropy density given(n), for a gas in LTE. Since is not stationary unless, e andu are uniform

in the whole box, i.ef = feq itis expected and partially prov¢$,15], that starting with an initiafp(x, v), which

can be far from a local Maxwelliary; (x, v) will “rapidly” approach anf which is close to}‘(v; n,u, T) and will

stay close to it while the local variablesu ande change on a slower time scale. As the gradients become smaller
this evolution will be hydrodynamic, i.@, u, e will evolve according to the compressible Navier—Stokes equations,
which will then bring the gas to equilibrium withioc eq increasing with time.

Note thatf satisfies the requirements for macro-variables discussed in the beginning of this sectioSg@that
is indeed a useful entropy functional. The non-decreasgdaf/;) for f; a solution for the BE is, as already noted,

a consequence of Boltzmann'’s interpretation of the second law. As put by Boltzmann: “In one respect we have
even generalized the entropy principle here, in that we have been able to define the entropy in a gas that is not in a
stationary state[4b, p. 75]

Itis important to distinguish betweefy, (x, v) and another object with the same name, the marginal one-particle
(probability) distributionFy(x, v, ) obtained from anV-particle ensemble density evolving according to the Li-
ouville equation. We mention here an instructive example in wifigix, v, 0) = fx,(X, V) but Fi(X,v, 1) #
fx, (X, v) so thatFy(x, v, r) does not give an appropriate description of the macrostate of the system. Consider a
macroscopic system @¥ non-interacting point particles, moving among a periodic array of scatterers in a macro-
scopic volumeV [7,10]. Starting with a non-uniform initial densityx,(x, v) the time evolvedfy, (x, v) will
approachf which depends only ofv| and which will have a large$gaq ). Since, howeverfi(x, v, 1) evolves
according to the one-particle Liouville equatiofi| F1log F1dxdv remains constant in time. What is crucial
here is that what one might have regarded as the obvious evolution equatigg for this system, namely the
one-particle Liouville equation, in fact does not describe the evolutiofixpffor times after whichFy(x, v, 1)
has developed structure on the microscopic scale. (We note that when the periodicity of the scatterers is on the
microscopic scale then for macroscopic times the spatial density prgfite) will satisfy a diffusion equation
[7,20].)
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5. The Boltzmann entropy of dense fluids not in LTE

As already noted, it is very important for the microscopic derivation of the second law and ipso facto for the
increase ofSgaq fx,) that the initial microstate(o of the system under consideration be typicalpf,. Consider
now the case when the interaction potential energy between the particles is not negligible($8)tisajust the
kinetic energyK rather than the total energy. The region/;, will then include phase points with widely differing
total energies. The set of microstatéof a system with a specified enerdy(X) = E, will then correspond to a
small fraction ofFM(X) unlessE is such that almost all the points FM(X) are also in the energy shell arouid

This illuminates the example considered by Jayjtié% one starts with a non-equilibrium system with enefyy
in which the kinetic energ¥ is larger than what it would be for an equilibrium system with the same erergie
system will evolve towards equilibrium with a Maxwellian velocity distribution at temperafe= (2/3k)Kg,
whereK g is the equilibrium kinetic energy correspondingdoAssuming thaifp is a Maxwellian with temperature
To we will have Ty, < Tp and s0Sgad foo) < Sgad( f0). However, since the microstates corresponding to the initial
situation just described are not typical for the macrostalgsthis example does not contradict the typical second
law behavior ofS( f;).

To properly describe non-LTE macrostates for dense fluids let us suppose now thgbbethand E are used
to specify the macrostat® for a fluid with HamiltonianH

H=Y" %mvg +3 g -1y (24)

in which interactions are important. We expect then that the evolution of a typical Xigtial I'y,, with H(Xg) = E
and fx, (X, v) = fo(x,Vv), will indeed be such thaSg (M (X,)) = Sg(f;, E) will increase with time in an actual
systemeven if there is no autonomous evolution law fgy.

To computeSg(f, E) = log|I'skl|, let us consider first the case where the macrostatie specified by both
f(x, v) and the local energy densi¢yx). The particle, kinetic and potential energy densitiés), K(x) and®(x)
are determined fronf ande,

1
n(x) = / f(X, V) dv, KX) = Em/vzf dv, D(X) = e(X) — K(X). (25)
R3
It is easy to see that the entropy corresponding/taan be split into momentum space and configuration space
contributions
Se(fe)=S™(N +SOm, @) (26)

The momentum contributiof™ can be readily computed along the lines of formEs)—(17)

s™(f = —/ dx/ dv fx, v) log | LY
v JR3 n(X)

while S© (n, @) is the configurational local equilibrium entropy corresponding to the deméityand the potential
energy densityp(x). S© is clearly the same as the configurational parfigd eq computed at the energy density
¢’ (x) that corresponds té@(x) in LTE, i.e.

(27)

S©(n, @) = Sioceq (1,0, ) — gk / n(x)log T’ (x) dx (28)
\%

whereT’(x) is the temperature corresponding:tx). Sioc.eq is defined in(7) using the equilibriuns(e, n) and the
subtracted kinetic term corresponds to the first term on the right si@3pf
We can now obtaissg (£, E) by taking the sup ofg(/, e) over all energy densitiegx) such thatf,, e(x) dx = E.
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An alternative way to computggs ( f, E) is to note that
Se(f E)=S™ () + SO, Pror). (29)

whereS© (n, dyo) is the (configurational) entropy associated with the macro-variabdesl @ for
Pror = E — / K(x) dx. (30)

We now observe thai© (n, ®yor ) must agree with the configurational entropy of a system with a Hamiltonian

H= T Y o)+ Y b

in equilibrium at energyt’, when we choose:’ andu (x) in such a way that the equilibrium density is equat t®)
and the total (coarse-grained) internal potential energy has the @gud.e.)  ¢(r; —r;) = Pior, Wheredyg is
given by(30). Letting thenS(E’, N, V; u) be the equilibrium entropy of the systd@il) we have

S©(n, o) = S(E', N, V; u) — 3Nklog(KT), (32)

whereT’ = (2/3k)(Kg/N) is the temperature corresponding to the enefigyand the right-hand side is the
configurational part of the equilibrium entropy of syst€®0) at energyE’. (To actually computeS(E’, N, V; u)

and find the appropriate(x) for a specified:(x) and® we would have to use the canonical or grand canonical
ensembles and the corresponding Gibbs entropieSaei@n 6)

These considerations simplify for a system of hard spheres where the interactions do not contribute to the energy,
i.e. E = K. The phase space domain for a speciffed then just a direct product of the configurational and
momentum space regions. The configuration space itself is modified from what it is for a non-interacting system to
exclude all microstateX such that the distance between any pair of particles is lesstliamhard sphere diameter.

Eqg. (32)now assumes the form

Shs() = S™(H + 82 (), (33)

whereE is specified byf ande]‘;) (n) is the configurational part of the entropy of an equilibrium system of hard
spheres kept at a non-uniform densitx) = [zs f(x, v) dv by some external potentialx).

The entropy functiorshs(f) in (33) is the same as that used by Resiléis(in a different form) to obtain an
H-theorem for the modified Enskog equation (MEE). It is generally believed that the MEE, which is a heuristic
extension of the BE, accurately describes the evolutiof 6f, v) for a moderately dense hard sphere fluid, say
na® < 0.1, whereu is the hard sphere diamet&;6]. The remarkable result, proved by Resib@ is that when
fi(X, v) evolves according to the MEE then

d
Eshs(ft) >0 (34)

with equality holding only wherf = feq. (This is actually a stronger statement about entropy increase than what
is given by the BE where collisions alone do not chasigg( f) when f is a local Maxwellian. The reason for this
difference is the non-locality of the collisions in the MEE, §&fe We still have, howevelhs(f) = Siog.eq (e, U, 1)
when f = }”(v; n, u, T) and the hydrodynamic variables change slowly in space.)

Resibois was driven to an expression $pg equivalent to(33) by the structure of the MEE and argued that it
should have an intrinsic significance. Our identificatiorsgf( /) with the Boltzmann entrop§s(f, E), i.e. as the
log of the phase space volume for such a non-equilibrium system, completely justifies Resibois’ intuition. It further
shows the necessity of the modification of the original Enskog equation: as we have pointed out repeatedly, any
deterministic evolution equation arising from the microscopic dynamics for macro-variables syicmast be



62 S Goldstein, J.L. Lebowitz/ Physica D 193 (2004) 53-66

such that the corresponding Boltzmann entropy satisfigg-imorem for that equation. The unmodified Enskog
equation apparently does not have that prop].
Let us make the statement about the increas¥ 6fF) a bit more concrete. Define

-1
35© (n, @) }

9D (35)

Tep(n) = |:

wheres© (n, @) is the configurational entropy per unit volume for a system with Hamiltof@4h) at uniform
particle density: and uniform potential energy densidy. Ty (n) is the inverse of the functio®@(n, T) relating®
to the temperatur@ for this system. Similarly

5O, @ — , T —u, T 3
ST, @) _ —pom,Te) _ —p0,Te) 3 klog Ty + const, (36)
on T<p T(p 2

where i (n, T) is the chemical potential of such an equilibrium system. (Of course for an equilibrium system
Te = Tx = (m/3){(v — u)?)/k whereTx is the kinetic temperature of the system.) Our definitions are motivated
by (1), (11) and the structure off in (24).

Turning now to non-equilibrium systems with macrostates giverf®yv) ande(x) we have, ford = @(x),

SO, @) = / dx s© (n(x), @(x)). (37)
v
To obtains© (n, &yt ) we have to take the sup 6f9 (n, @) over all®(x) such that
/ D(X) dX = Prot.. (38)
%

Using(35)this yields immediately, as might be expected, that the sup is achievedRghgm (x)) = const, which
we shall callTe,,, since its value is determined by the requirem@aj).
We are now able, after some manipulations, to obtain

dS(f,,E) f/( _) It ey — fdx[w(n,%m) N MK(”»TK)] on(x, 1)
T‘ptot. Tk ot

ad do
-1 -1 tot.
+ / X Ty = Ku O 1) + T =5 = (39)
where
_ 3 _ 2 KU(Xv t)

UK = Eklog Tk (X, 1) 4 const, Tk, 1) = o R (40)

with
m 2 m 2

Ky(X, 1) = > V—uX, D) fx,v,nadv=KX,1 — En(x, nus(x, r

and where
_ 2
F, = n(x, n(2amTx) "% exp _m V- uxn)” (41)
2 kKTx

is alocal Maxwellian with parametefy, n, K andu computed frony;. The first term if(39) corresponds to changes
in the entropy due to the redistribution of velocities, while the other terms are as expected from thermodynamic
considerations.
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Eq. (39)simplifies for a spatially uniform system for which= 0, (dn/df) = 0 andTk is independent of. If,
furthermore,f; happens to be a Maxwellian with a temperatfige(a case considered by Jayri#6]), then (at that
instant)

ds(f;, E) dK___4 1
— = — [T —T 42
dr dr [Tk ] (42)
whereK = E — @y is the total kinetic energy of the system. Our assertion is then &iatldhas the same sign
as(Te,, — Tk), which is certainly expected even in the absence of any deterministic equatipn for

6. Other kinetic equations

The Boltzmann and modified Enskog equations are appropriate for systems in which the interaction between the
particles can be represented by a succession of uncorrelated binary encounters or collisions. The extension of these
equation to dense, non-hard sphere fluids or to mixtures of hard spheres is not straightfaidjade are not
aware of any results abo#-theorems for such equations.

For systems with dominant long range interactions, such as plasmas, the time evolutiomiadre f has several
components) is determined in suitable regimes of temperature and density by a Vlasov equation combined with
Boltzmann, Balescu-Lenard, or Landau collision tef®. The Vlasov term describes in a mean-field way the long
range interaction between the particles. These interactions contribute to the energy, which is determined entirely by
f, but not directly to the entropy of the system, i.e. the entropy continues to be given (at the level of approximation
considered) bysgad /) in (17). When the short-range collisions are neglected, the smooth solutions of the Vlasov
equation, like those of the Euler equations, leave the entropy unchanged. The inclusion of the short-range collision
terms then provides af{-theorem forSyaq f;). This is analogous to what happens when the viscosity terms are
added to the Euler equations to yield the Navier—Stokes equations.

Going beyond deterministic equations, there must also b¥-#imeorem when the macro-variables undergo a
stochastic Markovian evolution, since, in the thermodynamic limit, the probability of a transition to lower entropy
is of much smaller order than the (order unity) probabilities describing the Markov process. However, we know
of no examples of such macro-variables. (The small-scale stochastic correction to the deterministic evolution of
macro-variables will of course fail to obey &frtheorem, since the probability of these fluctuations is of the same
order as the exponential of the entropy changes.)

7. Concluding remarks

The entropy of a macroscopic state, definedhg. (1) and (6)is clearly a property of an individual macroscopic
system specified by macro-variabl#s We neither have nor need ensembles to observe the time asymmetric
evolution of the color profile of a glass of water in which we dissolve a capsule of purple ink. The appropriate
choice ofM for this process is clearly that corresponding to dividing the glass into a suitable large number of little
cubes and specifying the coarse-grained fraction of ink molecules in each cube as wasSkxrimm3 The exact
number of little cubes, as long as it is still small compared to the number of ink molecules, will notSfeact
leading order in the number of molecules. To this orsiewwill coincide with Sigc.eq. The evolution ofd/; will be
given by the solution to a diffusion equation a$igk M,) will satisfy the second law.

As argued inSection 3 this behavior can be understood fully from Boltzmann’s microscopic interpretation of
entropy. This direct explanatory connection between Boltzmann’s entropy and the observed behavior of individual
macroscopic systems seems lacking in other definitions of entropy in which probability distributions are a key
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ingredient. The best known of these is the Gibbs entropy,

Sc(p) = —k/ plogpdX, (43)
r
wherep(X) is some given probability (ensemble) density. Clearly # oy
|y |~t i X € Iy,
X) = 44
om (%) { 0 otherwise “44)
then
Sc(pm) = klog|I'm| = Se(M). (45)

For a system specified by the thermodynamic varialéx) = (E, N, V), py corresponds to the microcanonical
ensemble. Using the equivalence of equilibrium ensembles for macroscopic systpn#5)holds also for the
canonical and grandcanonical ensembles, in the thermodynamic limit. Ififastof paramount importance both
in the mathematical foundations and practical applications of equilibrium statistical mechanics. On the other hand,
as is very well knownSg, unlike Sg, does not change in time for an isolated system evolving under Hamiltonian
dynamics Bc () = Sc(pr), wherep,(X) is po(X—,)]. Itis therefore inappropriate, we believe, to $geor quantities
like it in “derivations” of the second law without explicitly considering typical behavior. Attempts to remedy this
through the use of coarse-grained ensembles may be useful mathematically, but conceptually they are just variation
on the Boltzmann entropl9].

The Boltzmann entropy itself is, as indicated by the use of macro-variables for its very formulation, meaningful
only for macroscopic systems. For such systems one can speak of the behavior of the macro-vyéastdesing
from the evolution of a typical microstate iy, . It might still be true that a system containing just a few particles
exhibits ergodicity, mixing, positive Lyapunov exponents, etc.; this is true e.g. for a particle moving among fixed
convex scatterers on a torus (Sinai billiard). But the physical system of one such particle will not exhibit any time
asymmetric behavior, corresponding to the diffusion of the purple ink in the glass of water. Unlike the glass of inky
water or a very large number of particles moving among such scatterers (see the discussion at tBeetimhc}
a film of the particle’s motion run backwards will look the same as one run forward.

The situation is different when one considers open systems, e.g. systems in contact with thermal rEis& 2@jirs
The time evolution of the microstafé of such a system is then no longer given by a Hamiltonian since the system
is not isolated and(p;) need no longer be constant in time. It is in fact reasonable in some cases t& aeat
a random variable evolving via a stochastic Markovian dynamics. It is then easy to show that when the Markov
process has a stationary dengityX) then the relative entropy

Sa(pilp) = —k / prlog (p—) dx (46)
r o

increases monotonically in time.

A different situation, of current interest, in whidg (o) is not constant is that of a closed system evolving under
a deterministic non-Hamiltonian thermostated dynarfi€20] Starting with an initial density(X, 0), uniform
(or absolutely continuous) with respect to the appropriate Lebesgue measure, the dynamicsdesds te- p,
ast — oo, with p singular with respect to Lebesgue measures(@enerally an SRB measure), afic p) — —oo
decreasing with time in such a way that

d
ESG(P) — —0, (47)
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with o > 0. Thiso is frequently interpreted as an “entropy production” and indeed has, in some cases, a form similar

to the hydrodynamic entropy production in a stationary open system in which there are currents. The connection
between the steady states of systems evolving under the invented thermostated dynamics and those obtained from
more realistic models for which the stationgrys not singular is still not entirely clear. The same is true for the
correct identification of entropy in such systefhg—23]

It should be noted that the word entropy is used very widely in contexts other than that of macroscopic physical
systems. There is the Shannon information entropy—which is formally similgs,tbut is designed for situations
which have apparently nothing to do with thermodynamics—the Kolmogorov—Sinai and topological entropies of
dynamical systems, etc. These entropies are clearly very useful and clearly different from the Clausius and Boltzmann
entropies. Surprisingly, there are frequently some unexpected deep connections between these different entropies
which are very interestinf4—26]

Let us finally discuss the choice of appropriate macro-variabeis terms of which to describe a particular
non-equilibrium system of interest in some microst&tevhich is far from LTE. We do not want to choose too
coarse a description: one for whighis not typical ofI'y(x). This occurred in the example of Jaynes discussed in
Section 5 the problem could be remedied there by introducing more refined macrostates, given not fustitoy
by f andE. We also do not want to use a description more detailed than is relevant to macroscopic behavior.

What we are after is a useful minimal description via macro-varialflesdapted to the situation (corresponding
to a microstateX) under consideration. This is always achieved whefs such thafl) My, typically obeys an
autonomous deterministic evolution law, such as those corresponding to hydrodynamics, the BE, or the MEE and
(2) X is typical in this sense afj(x).
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