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We obtain exact analytical results for the evolution of a 1+1-dimensional Luttinger

model prepared in a domain wall initial state, i.e., a state with different densities

on its left and right sides. Such an initial state is modeled as the ground state of a

translation invariant Luttinger Hamiltonian Hλ with short range non-local interac-

tion and different chemical potentials to the left and right of the origin. The system

evolves for time t > 0 via a Hamiltonian Hλ′ which differs from Hλ by the strength of

the interaction. Asymptotically in time, as t →∞, after taking the thermodynamic

limit, the system approaches a translation invariant steady state. This final steady

state carries a current I and has an effective chemical potential difference µ+ − µ−
between right- (+) and left- (−) moving fermions obtained from the two-point corre-

lation function. Both I and µ+−µ− depend on λ and λ′. Only for the case λ = λ′ = 0

does µ+ − µ− equal the difference in the initial left and right chemical potentials.

Nevertheless, the Landauer conductance for the final state, G = I/(µ+ − µ−), has a

universal value equal to the conductance quantum e2/h for the spinless case.

1. INTRODUCTION

The transport properties of a mesoscopic system are manifested in the evolution of its
locally conserved quantities, such as particle and energy densities, following a quench from
a non-uniform state. In its simplest form, one prepares an isolated system in an initial
state at time t = 0 with different density or temperature profiles to the left and right of the
system, and then lets it evolve according to its internal translation invariant Hamiltonian.
The state of the system at a time t > 0 will then depend on the initial state and on the
nature of the Hamiltonian. After a long time, a system with “good” ergodic properties will
forget the details of its initial state and come to thermal equilibrium depending only on the
total energy and on the number of particles of the initial state. This is what is expected to
be true for typical quantum systems. The exceptions are integrable systems, in which there
are many conserved quantities, and systems with many-body localization; see, e.g., [1–5].
For such systems there will still be an approach to some form of steady state, and this is
sometimes called equilibration or stabilization. (While we would prefer the latter terminology
to distinguish from thermal equilibration, also known as thermalization, the former is used
for reasons of convention.)
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2 1 Introduction

The time of approach to a steady state will depend on the size of the system. Moreover, if
one considers the entire system, there can never be a full loss of memory of the initial state.
After all, the evolution of an isolated quantum system is reversible, and for a finite quantum
system the evolution is even quasi-periodic. The approach to a steady state is therefore
to be taken in a weak sense, i.e., one has to look at local (coarse-grained) quantities and
wait a long time but not too long. This should be equivalent to start with a finite system,
say a one-dimensional system on the interval [−L/2, L/2] for L > 0 prepared in an initial
state which is different to the left and right of the origin, evolve the system for a time t,
and consider its state projected on a subsystem taken as the interval [−`, `] for L > ` > 0,
followed by first letting L →∞ and then t →∞ while keeping ` fixed but arbitrary. In this
way we can expect to obtain a steady state, described by a density matrix on the interval
[−`, `], and then ask for the density profile and the current in this final steady state [6–9].

To anticipate the properties of a final steady state in this set-up we consider first a
system of length L > 0 in contact with infinite reservoirs at its left and right boundaries with
different fixed chemical potentials or temperatures (µL, TL) and (µR, TR), respectively. The
coupling between system and reservoirs is done stochastically for classical systems [10–15],
and for quantum systems one uses Lindblad-type operators [7–9, 16]. Such a system will in
general approach a steady state for fixed L. We can then define the electrical conductivity
σ as the ratio of the steady particle current I to the average gradient (µL − µR)/L:

σ = I

(µL − µR)/L
. (1)

In the same way the thermal conductivity is defined as the ratio of the steady heat current
to (TL − TR)/L. In general, σ ∼ Lα as L → ∞, with α depending on the type of system
[9–15, 17, 18]. Several cases can be distinguished:

1. α = 0 (normal conductivity). In this case the system obeys Fourier’s law. This has been
shown, so far, only for classical systems with non-momentum conserving stochasticity
in the bulk dynamics [13, 14].

2. α = 1 (perfect conductivity). This is the case, e.g., for fully integrable systems such
as the harmonic crystal [15] or free fermions [9]. These systems have freely moving
particles which carry the current.

3. 0 < α < 1 (enhanced conductivity). This is expected to be the case for anharmonic
one-dimensional systems with momentum conserving interactions as, e.g., in the Fermi-
Pasta-Ulam system. The only case where this has been proven rigorously, with α = 1/2,
is for a classical harmonic chain with momentum conserving stochastic interactions
[17].

4. α = −∞ (zero conductivity). More precisely, σ → 0 exponentially in L. This is the case
when one has localization as in a harmonic chain with random pinnings [18]. Here too
the result is for a classical system coupled to the reservoirs via Langevin terms. We
expect, however, this to be the same for quantum systems.

We note that in cases 1 and 3 it is not clear a priori how to model the stochastic interactions
for a quantum system. This is an important open problem.

Going back to the isolated system of interest here, we expect the behavior of the subsystem
on [−`, `] in the limit L → ∞ followed by the limit t → ∞ to be as follows. In case 1, the
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subsystem will be in a thermal equilibrium state with vanishing current. In case 2, it will be
in a steady state which is translation invariant and has a non-vanishing current. In case 3,
it will again be in a translation invariant steady state but without any current. In case 4, it
will be in a steady state which maintains the initial profile, or something close to this, and
thus will not be translation invariant or have a current.

Case 2 of the above general classification can be checked in concrete quantum models,
simple enough to be accessible by analytical or numerical methods. Examples include quan-
tum XX spin chains [5, 19] describing free fermions; see also [20] for closely related work. In
this case, the absence of interaction makes the system solvable, and, starting from a domain
wall density profile, one gets a final steady state carrying a non-vanishing current. The XXZ
model is an extension of the XX model describing interacting fermions which is exactly
solvable by Bethe ansatz. However, despite interesting recent progress [21], it seems still
unclear if this solution can be used to acquire full information on the evolution of domain
walls. Indeed, existing results on the evolution of quantum XXZ spins chains from a domain
wall state are mostly numerical or based on approximations [22, 23].

Here we shall consider a model for interacting (spinless) fermions which is more accessible
to an analytical investigation, namely the Luttinger model [24–26] with a non-local inter-
action. The first correct solution of this model and its ground state two-point correlation
function were obtained in [26], and the evolution after a quench from a homogenous state
was studied in [27, 28] for a local interaction and in [29] for a non-local interaction. We also
note that, concerning its equilibrium properties, the Luttinger model is a prototype for a
larger equivalence class of one-dimensional systems called Luttinger liquids [30].

The Luttinger Hamiltonian

Hλ =∑
r=±
∫

L/2

−L/2
dx ∶ψ̃+r (x)(−irvF∂x − µ0 (1 + 2λ

πvF
∫

L/2

−L/2
dyV (y))) ψ̃−r (x)∶

+ λ ∑
r,r′=±

∫
L/2

−L/2
dxdy V (x − y)(∶ψ̃+r (x)ψ̃−r (x)∶∶ψ̃+r′(y)ψ̃−r′(y)∶ − ( µ0

2πvF
)
2

) (2)

describes right- and left-moving fermions on a line for r = + and r = −, respectively, given by
fields ψ̃±r (x) satisfying antiperiodic boundary conditions and the canonical anticommutation
relations

{ψ̃−r (x), ψ̃+r′(x′)} = δr,r′δ(x − x′), {ψ̃±r (x), ψ̃±r′(x′)} = 0, (3)

with ∶⋯∶ indicating Wick (normal) ordering, Fermi velocity vF , chemical potential µ0, cou-
pling constant λ, and a short range non-local interaction potential V (x−y); see, e.g., [31–33]
and references therein. The chemical potential µ0 corresponds to the filled Dirac sea, and
we adopt the description where this is taken as the ground state. This, however, means that
there can be both positive and negative densities, which should be interpreted as relative
densities to a large constant ground state density. We consider an initial state with different
density profiles to the left and right of the system, modeled as the ground state ∣Ψλ,µ⟩ of the
Hamiltonian

Hλ,µ =Hλ −∑
r=±
∫

L/2

−L/2
dx (µLθ(−x) + µRθ(x)) ( ∶ψ̃+r (x)ψ̃−r (x)∶ −

µ0

2πvF
) (4)

with different chemical potentials to the left, µL = µ0+µ/2, and right, µR = µ0−µ/2, assuming
for definiteness µL > µR, i.e., µ > 0 as illustrated in Fig. 1. We consider the evolution of this
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state under a Luttinger Hamiltonian Hλ′ with a new coupling constant λ′, i.e., we consider
the state ∣Ψλ′

λ,µ(t)⟩ = e−iHλ′ t∣Ψλ,µ⟩. In the case λ = λ′ this corresponds to an experiment in
which one switches off an external field producing an excess of density on one side of the
system compared to the other at time t = 0 and considers the evolution of the system under
the translation invariant Hamiltonian Hλ for time t > 0. On the other hand, if λ ≠ λ′, there
is in addition an interaction quench, i.e., at t = 0 there is also a change from λ to λ′.

Let us first consider the non-interacting case λ = λ′ = 0. By taking the limit L → ∞
followed by the limit t → ∞, the system reaches a final steady state which is translation
invariant and has a non-vanishing current which is linear in µL − µR. The steady state has
the same two-point correlation function as the ground state of a system of non-interacting
fermions with different chemical potentials µ± = µ0 ± µ/2 for right- (+) and left- (−) moving
fermions, as illustrated in Fig. 2. Thus, at t = 0 there is an excess of density on the left side
compared to the right, and, asymptotically in time, there is a steady current corresponding
to more right-moving fermions (coming from the left) than left-moving fermions (coming
from the right). The current satisfies the following relation in the non-interacting case:

I = e
2

h
(µL − µR) =

e2

h
(µ+ − µ−), (5)

where e2/h is the conductance quantum for the spinless case. The conductivity defined in (1)
is therefore diverging linearly with L (corresponding to case 2 in our general classification).

µL − µ0

µR − µ0

−1 −1/2 1/2 1
x/`

µW (x)

FIG. 1. Domain wall initial state, with the left

chemical potential µL −µ0 larger than the right

chemical potential µR −µ0, produced by an ex-

ternal field W (x) with a smooth transition be-

tween the two sides of the system.

−µ0 −µ− µ0 µ+
vF k

ε±(k)

FIG. 2. Fermi sea for the final state given by the

linear dispersion relations ε±(k) = ±vFk−µ± for

right- (+) and left- (−) moving fermions starting

from a domain wall state, µ > 0 (solid lines), and

from a uniform state, µ = 0 (dashed lines).

In this paper we address the question of how the interaction modifies the above picture.
The results are presented in detail in Sec. 2. As before, the system reaches a steady state
which is translation invariant and has a non-vanishing current which is still linear in µL−µR
but depends on the Hamiltonian driving the evolution and on the initial state. However, the
final steady state obtained as t → ∞ has different chemical potentials µ+ and µ− for right-
and left-moving fermions, respectively, obtained from the two-point correlation function.
While µL − µR = µ+ − µ− without interaction, this is not true in the interacting case:

I = Gλ,λ′(µL − µR) =
e2

h
(µ+ − µ−), (6)

where Gλ,λ′ is independent of µL−µR but is a non-trivial function of the microscopic param-
eters λ and λ′. The approach to this steady state is somewhat similar to the non-interacting
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case: we will show that the system evolves ballistically but that the non-local interaction
produces dispersion effects, similar to what is observed in numerical simulations for quan-
tum XXZ spin chains in [22]. When λ = λ′, the ratio Gλ,λ′ between I and µL −µR reduces to
the value computed at equilibrium in linear response theory, Gλ,λ = Kλe2/h [34], where Kλ

is the so-called Luttinger parameter; this was also found by numerical simulations in [22].

We find the relation in (6) remarkable for the following reasons. It says that the ratio of
the steady current to the difference between left and right chemical potentials is highly non-
universal (since it depends on the details of the initial state and the Hamiltonian driving
the evolution). On the other hand, the ratio of the steady current to the difference between
chemical potentials of right- and left-moving fermions for the final state is perfectly universal.
The reason is that both I and µ+ − µ− are renormalized – a quantum many-body effect due
to the interaction between the particles – but with the property that the renormalizations
precisely cancel if one takes their ratio. This means that the Landauer conductance [35,
36] for the final state is universal, which confirms previous results obtained in near-to-
equilibrium approaches; see, e.g., [36–39]. However, we stress that we show this universality
in a dynamical model of interacting fermions by a fully non-equilibrium approach.

Further understanding of the final steady state can be gained by studying the correlation
functions. When λ = λ′ this state has the same two-point correlation function as the ground
state of a Luttinger Hamiltonian similar to Hλ but with different chemical potentials µ± for
right- and left-moving fermions. This suggests that it corresponds to a generalized canonical
ensemble [5]. However, this is very different if λ ≠ λ′ ≠ 0, where a different steady state is
reached which cannot be described as the ground state of some Luttinger Hamiltonian (this
can be seen by, e.g., studying non-equal-time correlation functions; cf. also [28]). This steady
state, which has to be a function of the constants of motion of Hλ′ , has peculiar properties:
its two-point correlation function have exponents which are non-trivial functions of λ and λ′

and thus different from the equilibrium exponents. These non-equilibrium exponents reduce
to the equilibrium ones computed in [26] when λ = λ′ and to the ones in [28] when λ = 0
or λ′ = 0, but the general expressions are to our knowledge new. Whether this state also
corresponds to a generalized canonical ensemble is left open.

The paper is organized as follows. In Sec. 2 we formulate the model and state the results.
In Sec. 3 we review the solution of the Luttinger model in [26]. In Secs. 4–6 we prove
our results by, first, solving the Luttinger model with an external field, second, quenching
the system, and third, studying the approach to a steady state; for the latter we use a
mathematical result stated and proved in Appendix A. In Sec. 7 we prove that the two-point
correlation function for the final steady state is the same as that of a Luttinger model at
equilibrium with different constant chemical potentials for right- and left-moving fermions;
this is extended in Appendix B to more general interactions. Sec. 8 contains concluding
remarks, including a discussion of the conductance in the Luttinger model.

2. FORMULATION AND RESULTS

We study the evolution and approach to steady state of a system of right- and left-moving
interacting (spinless) fermions on a line with length L > 0 described by the Luttinger model
with a short range non-local interaction potential V (x). The system is put out of equilibrium
by switching off an external field producing an excess of density on one side compared to
the other. The time evolution is given by the Hamiltonian in (2) with fields ψ̃±r (x), which is
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equivalent to

Hλ =∑
r=±
∫

L/2

−L/2
dx ∶ψ+r (x) (−irvF∂x)ψ−r (x)∶

+ λ ∑
r,r′=±

∫
L/2

−L/2
dxdy V (x − y) ∶ψ+r (x)ψ−r (x)∶∶ψ+r′(y)ψ−r′(y)∶ (7)

with fields ψ±r (x) = L−1/2∑k a±r,ke∓ikx for r = ± and k = π(2n + 1)/L with n ∈ Z (corresponding

to antiperiodic boundary conditions) describing right- (r = +) and left- (r = −) moving
fermions, where a±r,k are fermion creation and annihilation operators; this follows from the
identities

ψ̃±r (x) = e∓irv
−1
F µ0xψ±r (x), ∶ψ̃+r (x)ψ̃−r (x)∶ = ∶ψ+r (x)ψ−r (x)∶ +

µ0

2πvF
(8)

(the proof is given at the end of Sec. 7). Important (local) observables we consider are the
densities ρ±(x) = ∶ψ+±(x)ψ−±(x)∶ , which satisfy periodic boundary conditions if L is finite. We
define the total density as ρ(x) = ρ+(x)+ρ−(x) and the current as j(x) = vF (ρ+(x)−ρ−(x)).
In Appendix B we show that these definitions are consistent with the continuity equation
∂tρ(x, t)+∂xj(x, t) = 0 where ρ(x, t) = eiHλtρ(x)e−iHλt and similarly for j(x, t). We note that
the second identity in (8) makes clear how the densities should be interpreted, namely as
relative densities around the large ground state density of the filled Dirac sea determined
by the Fermi momentum µ0/vF . This explains why both positive and negative densities are
allowed.

We require the following conditions on the Fourier transform V̂ (p) = ∫
L/2

−L/2 dxV (x)e−ipx
of the interaction potential to be satisfied:

1. V̂ (p) = V̂ (−p) ∀p,
2. λV̂ (p) > −πvF /2 ∀p,
3. V̂ (p)∣p∣1+ε → 0 as p→ ±∞ for some ε > 0.

(9)

We will show that the second condition (cf. [26]) ensures that the system is stable and
that the third is needed for the interacting and non-interacting fermion Fock spaces to be
unitarily equivalent.

In Sec. 3 we make the Luttinger model mathematically precise by defining it in Fourier
space (cf. Remark 2.2). In particular, as is well-known, there is a unique Hilbert space, the
fermion Fock space F , defined by the canonical anticommutation relations and with vacuum
∣Ψ0⟩ given by the ground state of H0 (the relations determining F are given in (39) and
(40)). Moreover, the Luttinger Hamiltonian Hλ is a well-defined self-adjoint operator on F
bounded from below, with pure point spectrum, and with a non-degenerate ground state;
see, e.g., [33] for a recent review of the pertinent mathematical results.

The equilibrium properties of the Luttinger model are well known and the ground state
correlation functions can be exactly computed [26]. If we let ∣Ψλ⟩ denote the ground state
of Hλ, then, in the thermodynamic limit L→∞, the two-point correlation function is

⟨Ψλ∣ψ+r (x)ψ−r (y)∣Ψλ⟩ =
i

2πr(x − y) + i0+
exp(∫

∞

0
dp
ηλ(p)
p

(cosp(x − y) − 1)) (10)
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with ηλ(p) = (1−[λV̂ (p)/(πvF +λV̂ (p))]2)−1/2−1. As emphasized, this result (derived in [26]
for a different interaction) is in the thermodynamic limit; this is motivated by our interest
in length scales much smaller than the system size as discussed in Sec. 1. For later reference
we also note that (8) implies

⟨Ψλ∣ψ̃+r (x)ψ̃−r (y)∣Ψλ⟩ = e−irv
−1
F µ0(x−y)⟨Ψλ∣ψ+r (x)ψ−r (y)∣Ψλ⟩. (11)

The interaction produces a dramatic modification in the long distance decay of the correla-
tion functions, with the appearance of an anomalous exponent ηλ = ηλ(0), where, for large
∣x − y∣, the two-point correlation function decays as O(∣x − y∣−1−ηλ).

We investigate the non-equilibrium properties of this system when the initial state has an
excess of density on one side compared to the other. We choose as initial state the ground
state of the Hamiltonian in (4), which, using (8), is equivalent to

Hλ,µ =Hλ − µ∫
L/2

−L/2
dxW (x)ρ(x), (12)

where W (x) is an external field taken as a regularized version of 1/2 − θ(x) (with the
Heaviside function θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0) as depicted in Fig. 1. For finite
L, we need to take the periodic boundary conditions into account, and for this we use

W (x) = −1

2
(tanh(x/δ) − tanh((2x +L)/2δ) − tanh((2x −L)/2δ)) (13)

for some small δ > 0. In Sec. 4 we make this model well-defined by again working in Fourier
space. By explicitly constructing all eigenstates and the corresponding eigenvalues of Hλ,µ

we show the following:

Theorem 2.1. For finite L, the Hamiltonian Hλ,µ in (12), with V (x) satisfying the condi-
tions in (9) and W (x) in (13), defines a self-adjoint operator on the fermion Fock space F .
This operator is bounded from below, has pure point spectrum, and a non-degenerate ground
state.

From Sec. 1 we recall that the ground state of Hλ,µ is denoted by ∣Ψλ,µ⟩, and we consider
the evolution of this state under a different Hamiltonian Hλ′ with coupling constant λ′ and
no external field, i.e., we quench the system and consider

∣Ψλ′

λ,µ(t)⟩ = e−iHλ′ t∣Ψλ,µ⟩. (14)

We show that this state tends to a steady state as t → ∞ by analytically computing the
expectation values of certain observables. It is at the level of these expectation values that
we pass to the thermodynamic limit (cf. Remark 2.2), and in this limit we use the regularized
external field W (x) = −(1/2) tanh(x/δ). This external field has the Fourier transform

Ŵ (p) = iπδ

2 sinh(πδp/2)
, (15)

and letting δ → 0+ yields Ŵ (p) = ip−1 which is the Fourier transform of 1/2 − θ(x) (inter-
preted in a distributional sense as a Cauchy principal value). We also impose the following
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conditions on the interaction potential in order to derive exact results for the asymptotical
behavior of the system:

1. V̂ (p) ∈ C2(R) (a.e.),

2. V̂ (p), dV̂ (p)/dp, d2V̂ (p)/dp2 ∈ L1(R),
3. λp dV̂ (p)/dp > −πvF − 2λV̂ (p) ∀p.

(16)

As will be shown, the third condition means that the system evolves with a positive group
velocity (cf. (32)).

Remark 2.2. Following the approach described in Sec. 1, we only define the Luttinger model
for finite L. This allows for a simple rigorous construction of the model in Fourier space;
see, e.g., [33]. It is only for expectation values of observables, after we have computed them
for finite L, that we pass to the thermodynamic limit L → ∞. To make this clear, we use
⟨⋅⟩L to denote expectation values for finite L and write ⟨⋅⟩ = limL→∞⟨⋅⟩L, and similarly for
other quantities.

We first consider the case without interaction between the fermions, i.e., λ = λ′ = 0. The
results follow as special cases from the proofs in Sec. 5. For the total density and the current
we show that

⟨Ψ0
0,µ(t)∣ρ(x)∣Ψ0

0,µ(t)⟩ =
µ

2πvF
(W (x − vF t) +W (x + vF t)) , (17)

⟨Ψ0
0,µ(t)∣j(x)∣Ψ0

0,µ(t)⟩ =
µ

2π
(W (x − vF t) −W (x + vF t)) . (18)

If W (x) = 1/2 − θ(x), or our regularized version thereof, this means that there is a central
region (−vF t, vF t) around x = 0 with zero total density (relative to the large constant ground
state density) bounded by two fronts moving with constant velocity. The shape of the fronts
does not change with time, and, as t →∞, the system reaches a state with vanishing total
density everywhere. Similarly, the current is non-zero in the same region, and, as t →∞, it
tends to the non-vanishing value µ/2π everywhere.

We also show that the two-point correlation function without interaction is given by

⟨Ψ0
0,µ(t)∣ψ+r (x)ψ−r (y)∣Ψ0

0,µ(t)⟩ =
i

2πr(x − y) + i0+
exp(−irv−1F µ∫

x−rvF t

y−rvF t
dzW (z)) . (19)

For finite t, the two-point correlation function is not translation invariant. However, asymp-
totically in time,

lim
t→∞
∫

x−rvF t

y−rvF t
dzW (z) = rx − y

2
, (20)

meaning that translation invariance is recovered:

lim
t→∞

⟨Ψ0
0,µ(t)∣ψ+r (x)ψ−r (y)∣Ψ0

0,µ(t)⟩ =
ie−irv

−1
F (rµ/2)(x−y)

2πr(x − y) + i0+
. (21)

Since (21) is similar to (10) with λ = 0, this suggests that the final steady state is similar to
the ground state of free fermions with different chemical potentials µ± −µ0 = ±µ/2 for right-
and left-moving fermions, obtained from the two-point correlation function (cf. (11)). We can
make this precise by comparing (21) with the two-point correlation function obtained from
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a Hamiltonian describing such a system; this we will do below for the case with interaction.
Therefore, in absence of interaction, a very clear picture emerges: the ground state of free
fermions, with an external field producing a domain wall, evolves as t→∞ to a steady state
which has the same two-point correlation function as that of a ground state of free fermions
with different chemical potentials for right- and left-moving fermions.

Let us now consider the evolution of the domain wall initial state in the presence of
interaction, i.e., with non-zero λ and λ′. The question we try to answer is the following:
how does the interaction modify the evolution of the domain wall state? Below we present
the exact results for general λ and λ′. The proofs are given in Sec. 5.

We show that the total density and the current are given by the following exact expressions
in the thermodynamic limit:

R(x, t) = ⟨Ψλ′

λ,µ(t)∣ρ(x)∣Ψλ′

λ,µ(t)⟩ =
µ

2π ∫
∞

−∞

dp

2π

Kλ(p)
vλ(p)

Ŵ (p)2 cos(pvλ′(p)t)eipx, (22)

I(x, t) = ⟨Ψλ′

λ,µ(t)∣j(x)∣Ψλ′

λ,µ(t)⟩ =
µ

2π ∫
∞

−∞

dp

2π

Kλ(p)
vλ(p)

Ŵ (p)vλ′(p)(−2i sin(pvλ′(p)t))eipx (23)

with the renormalized Fermi velocity

vλ(p) = vF
√

1 + 2λV̂ (p)/πvF (24)

and the Luttinger parameter

Kλ(p) =
1

√
1 + 2λV̂ (p)/πvF

. (25)

For our particular interaction Kλ(p) and vλ(p) satisfy Kλ(p)vλ(p) = vF , but we note that
this is not true in general; see, e.g., [31] or Appendix B. For a special case, similar to a
case considered in [28], we plot the total density in Fig. 3 and the current in Fig. 4 for the
subsystem on the interval [−`, `] with L > ` > 0. In this case, the initial state is the non-
interacting ground state ∣Ψ0,µ⟩, which is evolved under Hλ′ with the non-local interaction

potential V̂ (p) = (πvF /2) sech(ap) with interaction range a > 0.
We show that the two-point correlation function is given by the following exact expression

in the thermodynamic limit:

⟨Ψλ′

λ,µ(t)∣ψ+r (x)ψ−r (y)∣Ψλ′

λ,µ(t)⟩ = e−irv
−1
F Ar(x,y,t)(x−y)Sr(x, y, t) (26)

with

Ar(x, y, t) = µ∫
∞

−∞

dp

2π

Kλ(p)
vλ(p)

Ŵ (p) (vF cos(pvλ′(p)t) − irvλ′(p) sin(pvλ′(p)t))
eipx − eipy
ip(x − y)

(27)
and

Sr(x, y, t) = ⟨Ψλ′

λ,0(t)∣ψ+r (x)ψ−r (y)∣Ψλ′

λ,0(t)⟩. (28)

The latter is the two-point correlation function in the absence of external field, i.e., µ = 0,
in which case the initial state is the ground state ∣Ψλ⟩ of Hλ but the Hamiltonian driving
the evolution is Hλ′ as before. We show that

Sr(x, y, t) =
i

2πr(x − y) + i0+
exp(∫

∞

0
dp
ηλ,λ′(p) − γλ,λ′(p) cos(2pvλ′(p)t)

p
(cosp(x − y) − 1))

(29)
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with exponents

ηλ,λ′(p) =
Kλ(p)(Kλ′(p)−2 + 1) +Kλ(p)−1(Kλ′(p)2 + 1)

4
− 1,

γλ,λ′(p) =
Kλ(p)(Kλ′(p)−2 − 1) +Kλ(p)−1(Kλ′(p)2 − 1)

4
.

(30)

In general, these differ from the equilibrium exponents in (10). The latter are obtained only
when λ = λ′, in which case ηλ,λ(p) = ηλ(p) = (Kλ(p) +Kλ(p)−1)/2 − 1 and γλ,λ(p) = 0, where

ηλ(p) can be expressed in terms of λV̂ (p) using (25). Note also the identity

ηλ,λ′(p) = ηλ(p) + γλ,λ′(p). (31)

This shows that the correlation function in (10) is, indeed, recovered at time t = 0.
Using the results above we study the asymptotic behavior of the total density, the current,

and the two-point correlation function. One important quantity describing the evolution is
the group velocity

vgλ(p) = d(pvλ(p))/dp, (32)

which we require to be positive (cf. Lemma A.1 in Appendix A where the positivity of vgλ(p)
is needed). This can be shown to correspond to the condition λpdV̂ (p)/dp > −πvF −2λV̂ (p)
in (16). In Sec. 6 we prove the following result (see (89) for a stronger version of (33)):

Theorem 2.3. If V (x) satisfies the conditions in (9) and (16), then

lim
t→∞

R(x, t) = 0, lim
t→∞

I(x, t) = µ

2π

Kλvλ′

vλ
, lim

t→∞
A±(x, y, t) = ±

µ

2

Kλvλ′

vλ
∀x, y (33)

and

lim
t→∞

⟨Ψλ′

λ,µ(t)∣ψ+r (x)ψ−r (y)∣Ψλ′

λ,µ(t)⟩

= ie
−irv−1F (rµKλvλ′/2vλ)(x−y)

2πr(x − y) + i0+
exp(∫

∞

0
dp
ηλ,λ′(p)

p
(cosp(x − y) − 1)) , (34)

where Kλ =Kλ(0) and vλ = vλ(0).

One consequence of (34) is that, while the two-point correlation function in (29) is not
translation invariant for finite t, translation invariance is recovered asymptotically in time.
This is a generalization of the corresponding result derived in [29]. As in the non-interacting
case, by comparing with (10), it follows that (34) describes fermions with different chemical
potentials for right- and left-moving particles,

µ± − µ0 = ±
µ

2

Kλvλ′

vλ
, (35)

obtained from the phase factor in the correlation function (cf. (11)). However, since ηλ,λ′(p) ≠
ηλ(p) when λ ≠ λ′ ≠ 0, the correlation function in (34) is not, in general, a ground state two-
point correlation function as in (10). The only case where this could be true is if λ = λ′, and
in Sec. 7 we prove the following result allowing us to compare (34) with the corresponding
(equal-time) two-point correlation function:
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(e) t = 2.0`/vF and λ′ = −0.80 (solid line), λ′ = −0.90, λ′ = −0.95, and λ′ = −0.99 (dotted line)

FIG. 3. Total density at time t and for coupling constant λ′, starting from the non-interacting

ground state, λ = 0, with domain wall profile, µ = 1, and evolving with a non-local interaction

potential V̂ (p) = (πvF /2) sech(ap) with interaction range a = 0.0025` and vF = 1.
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(e) t = 2.0`/vF and λ′ = −0.80 (solid line), λ′ = −0.90, λ′ = −0.95, and λ′ = −0.99 (dotted line)

FIG. 4. Current at time t and for coupling constant λ′, starting from the non-interacting ground

state, λ = 0, with domain wall profile, µ = 1, and evolving with a non-local interaction potential

V̂ (p) = (πvF /2) sech(ap) with interaction range a = 0.0025` and vF = 1.
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Theorem 2.4. For finite L, the Hamiltonian

H =Hλ −∑
r=±

(µr − µ0)Qr, Qr = ∫
L/2

−L/2
dxρr(x), (36)

with V (x) satisfying the conditions in (9) and µ± being constant chemical potentials satisfy-
ing µ++µ− = 2µ0, defines a self-adjoint operator on the fermion Fock space F . This operator
is bounded from below, has pure point spectrum, and a non-degenerate ground state. Denot-
ing the ground state of H by ∣Ψ⟩, the two-point correlation function in the thermodynamic
limit is

⟨Ψ∣ψ+r (x)ψ−r (y)∣Ψ⟩ = ie
−irv−1F (µr−µ0)(x−y)

2πr(x − y) + i0+
exp(∫

∞

0
dp
ηλ(p)
p

(cosp(x − y) − 1)) (37)

with ηλ(p) = ηλ,λ(p) in (30).

Thus (34) for λ = λ′ and (37) are the same, and this justifies the identification in (35).
Moreover, while we do not give the details, this result can also be extended to non-equal-time
two-point correlation functions, as explained at the end of Sec. 6.

In conclusion, as t → ∞, the system reaches a translation invariant steady state with a
vanishing density and a non-vanishing current. The region of vanishing density increases
with time and lies between two fronts which evolve ballistically. However, for a non-local
interaction, as in Fig. 3 and Fig. 4, the system is dispersive. To see this, note that, contrary to
the non-interacting case, the renormalized Fermi velocity in (24) and therefore also the group
velocity in (32), which determines the propagation of the fronts, depend on the momentum.
This means that the shape of the fronts changes over time. These dispersion effects appear,
e.g., as oscillations traveling ahead of the the fronts in Fig. 3 and Fig. 4. Similar behavior
was found in numerical simulations for quantum XXZ spin chains in [22].

Only in the case λ = λ′, i.e., if the quench consists simply of switching off the external
field, does one find that the steady state has the same two-point correlation function as the
ground state of the Hamiltonian in (36) with different chemical potentials µ± for right- and
left-moving fermions. When λ ≠ λ′ ≠ 0 the final steady state is inherently different from a
ground state of such a Hamiltonian since the non-equilibrium exponents in (34) are different
from the equilibrium ones in (10). This implies that memory of the initial state is conserved
for infinite times; cf. also [28].

It follows from Theorem 2.3 and Theorem 2.4 that the final steady state carries a current
I = µKλvλ′/2πvλ and has an effective chemical potential difference µ+ − µ− = µKλvλ′/vλ
depending on the coupling constants λ and λ′. However, even though the final state depends
on the details of the time evolution and the initial state, the Landauer conductance [35, 36]
is universal:

G = I

µ+ − µ−
= µKλvλ′

2πvλ

vλ
µKλvλ′

= 1

2π
, (38)

which is equal to the conductance quantum e2/h = 1/2π (in units where e = h̵ = 1) for the
spinless case. Since, in general, the final steady state is not the ground state of a Luttinger
Hamiltonian, this universality is a true non-equilibrium phenomenon.

Finally, we note that the formulas given above for the evolution following a quench can
be shown to remain valid for more general interactions in the Luttinger model; cf. the final
remark in Appendix B.
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3. EXACT SOLUTION OF THE LUTTINGER MODEL

We first solve the model in the absence of external field. What follows essentially reviews
the solution of the Luttinger model in [26] but for a different interaction (cf. the appendix
in [26]) than the usual Luttinger interaction [24] (cf. also Appendix B). Note that here and
in the reminder of the paper we use the convention that sums over variables range over all
allowed values, unless specified otherwise.

The ground state of the non-interacting Hamiltonian H0 is the filled Dirac sea ∣Ψ0⟩ defined
by the condition

a−r,rk∣Ψ0⟩ = a+r,−rk∣Ψ0⟩ = 0 ∀k > 0 (39)

using fermion creation and annihilation operators a±r,k, r = ± and k = π(2n+1)/L with n ∈ Z,
satisfying

{a−r,k , a+r′,k′} = δr,r′δk,k′ , {a±r,k , a±r′,k′} = 0. (40)

The conditions in (39) and (40) fully determine the fermion Fock space F , and the a±r,k can

be used to construct fields ψ±r (x) = L−1/2∑k a±r,ke∓ikx describing right- (r = +) and left- (r = −)

moving fermions. We define the densities as ρr(p) = ∑k ∶a+r,ka−r,k+p ∶ for p = 2πn/L with n ∈ Z,

where Wick (normal) ordering ∶⋯∶ can be defined as

∶A∶ = A − ⟨Ψ0∣A∣Ψ0⟩ (41)

for operators A = a+r,ka−r′,k′ . The densities satisfy

[ρr(p), ρr′(−p′)] = rδr,r′
Lp

2π
δp,p′ ,

ρ+(p)∣Ψ0⟩ = ρ−(−p)∣Ψ0⟩ = 0 ∀p ≥ 0,
(42)

and expressing the non-interacting Hamiltonian in Fourier space in its bosonized form,

H0 =
π

L
vF (ρ+(0)2 + ρ−(0)2) +∑

p>0

2π

L
vF (ρ+(−p)ρ+(p) + ρ−(p)ρ−(−p)) , (43)

one can see that
[H0, ρr(p)] = −rvFpρr(p). (44)

These results are well-known in both the condensed matter and mathematical physics liter-
ature; see, e.g., [33] for self-contained proofs. (We note that our conventions differ from [26]
in that ρ1(−p) and ρ2(−p) in [26] correspond to our densities ρ+(p) and ρ−(p), respectively,
and our conventions for the Fourier transform are such that ρr(x) = ∑p(1/L)ρr(p)eipx for
the densities, while in [26] the corresponding transform has a minus sign in the exponent.)

We now consider the interacting Hamiltonian

Hλ =H0 + λH ′,

H ′ = 1

L
V̂ (0)ρ(0)2 +∑

p≠0

1

L
V̂ (p)ρ(p)ρ(−p) (45)

with ρ(p) = ρ+(p) + ρ−(p) and V̂ (p) satisfying the conditions in (9). As explained in [26],
Hλ can be diagonalized by a Bogoliubov transformation implemented by a unitary operator
eiSλ (defined in (48)):

eiSλHλe
−iSλ =H0 − Tλ +Dλ +Wλ (46)
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with

Tλ = −
1

L
λV̂ (0)ρ(0)2 +∑

p>0

2π

L
vF (ρ+(−p)ρ+(p) + ρ−(p)ρ−(−p)) ,

Dλ =∑
p>0

2π

L
vλ(p) (ρ+(−p)ρ+(p) + ρ−(p)ρ−(−p)) ,

Wλ = −∑
p>0

(vF − vλ(p))p,

(47)

where vλ(p) is the renormalized Fermi velocity in (24). Since H0 − Tλ contains only zero
modes and Wλ is a c-number, both commute with the densities ρr(p). The unitary operator
eiSλ is given by

Sλ = i∑
p≠0

2π

L

ϕλ(p)
p

ρ+(−p)ρ−(p), tanh 2ϕλ(p) = −
λV̂ (p)

πvF + λV̂ (p)
∀p ≠ 0. (48)

It follows that [Sλ, ρr(p)] = −iϕλ(p)ρ−r(p) for p ≠ 0, which means that

eiSλρr(p)e−iSλ = ρr(p) coshϕλ(p) + ρ−r(p) sinhϕλ(p) (49)

(to see this, define gr(u) = eiuSλρr(p)e−iuSλ , differentiate, and solve the resulting differential
equation g′r(u) = ϕλ(p)g−r(u) with gr(0) = ρr(p)).

The interacting ground state is ∣Ψλ⟩ = e−iSλ ∣Ψ0⟩ with ground state energy Wλ. Since the

latter has to be a finite number, this imposes the condition in (9) that V̂ (p) must decay
faster than ∣p∣−1 for large ∣p∣. We also note that, when deriving (47), vλ(p) is found as

vλ(p) = vF
sech 2ϕλ(p)

1 + tanh 2ϕλ(p)
, (50)

which, using (48), gives precisely (24). From this we see that, since vλ(p) has to be real, we

must impose the stability condition λV̂ (p) > −πvF /2 in (9). Moreover, similar to (44),

[Dλ, ρr(p)] = −rvλ(p)pρr(p), (51)

which makes clear that vλ(p) is, indeed, to be interpreted as the renormalized Fermi velocity.
Finally, we demonstrate how to construct the eigenstates of Hλ from the eigenstates of H0.

To construct the latter we need the operators Qr = ρr(p = 0) in (36), which are Hermitian,
and also to introduce new operators Rr called Klein factors, which are unitary, satisfying

[Qr,Rr′] = rδr,r′Rr, R±R∓ = −R∓R±, ⟨Ψ0∣Rq+
+ R

−q−
− ∣Ψ0⟩ = δq+,0δq−,0 ∀q+, q− ∈ Z (52)

and commuting with all ρr(p) for p ≠ 0; see, e.g., [33]. For the latter, i.e., densities with non-
zero momenta, we find it convenient to introduce boson creation and annihilation operators

b+p = (b−p)
†
, b−p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−i
√

2π
L∣p∣ρ+(p) if p > 0,

+i
√

2π
L∣p∣ρ−(p) if p < 0,

(53)

respectively, satisfying

[b−p , b+p′] = δp,p′ , [b±p , b±p′] = 0, b−p ∣Ψ0⟩ = 0 ∀p ≠ 0. (54)
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It follows that the exact eigenstates of H0 (the eigenvalues are given by (57) for λ = 0) are

∣Ψ0,m⟩ =
⎛
⎜
⎝
∏
p≠0

(b+p)
m(p)

√
m(p)!

⎞
⎟
⎠
Rq+
+ R

−q−
− ∣Ψ0⟩ (55)

for m = {(m(p))p≠0 , q+, q−} with m(p) ∈ N and q+, q− ∈ Z, where at most finitely many of the

m(p) are non-zero. The ground state of H0 is identified as ∣Ψ0⟩ = ∣Ψ0,0⟩. These states form
an orthonormal basis for the fermion Fock space F , and we denote by D the set of all finite
linear combinations of these eigenstates, from which F can be obtained by norm-completion;
see, e.g., [40]. The integer pair (q+, q−) can be interpreted as the chiral charges of a given
state, and Q± and R± as charge and charge-changing operators, respectively. It follows that

∣Ψλ,m⟩ = e−iSλ ∣Ψ0,m⟩ (56)

are the exact eigenstates of Hλ with eigenvalues

Eλ,m = π
L
vF (q2+ + q2− +

λV̂ (0)
πvF

(q+ + q−)2) +∑
p≠0

vλ(p)∣p∣m(p) +Wλ. (57)

As for the case without interaction, the ground state of Hλ is identified as ∣Ψλ⟩ = ∣Ψλ,0⟩.
We note that, even though many identities stated involve unbounded operators, they are

well-defined on D; see, e.g., [33] for mathematical details.

4. LUTTINGER MODEL WITH AN EXTERNAL FIELD: PROOF OF

THEOREM 2.1

We extend the exact solution of the Luttinger model to include the case with an external

field W (x) satisfying the condition ∫
L/2

−L/2 dxW (x) = 0 as well as periodic boundary conditions

(which we recall are needed if L is finite). In other words, we consider the Hamiltonian

Hλ,µ =H0 + λH ′ − µP (58)

with

P =∑
r
∑
p

1

L
Ŵ (−p)ρr(p), (59)

where Ŵ (p) is the Fourier transform of W (x) satisfying Ŵ (0) = 0 due to the condition that
the integral of W (x) over the entire space is zero. To diagonalize Hλ,µ we introduce an
operator Aλ,µ defined as

Aλ,µ =∑
r
∑
p≠0

1

L
η̂(−p)rρr(p) (60)

for some suitable function η(x) with Fourier transform η̂(p), chosen so that it removes all
terms linear in the densities; we note that, without loss of generality, we may set η̂(0) = 0.
It follows that [Aλ,µ, ρr(p)] = −pη̂(p)/2π, which implies

eiAλ,µρr(p)e−iAλ,µ = ρr(p) −
1

2π
ipη̂(p) (61)
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(to see this, define gr(u) = eiuAλ,µρr(p)e−iuAλ,µ , differentiate, and solve the resulting differen-
tial equation g′r(u) = −ipη̂(p)/2π with gr(0) = ρr(p)). This operator applied to each term in
the Hamiltonian yields:

eiAλ,µH0e
−iAλ,µ =H0 − vF∑

r
∑
p

1

L
(−ip)η̂(−p)ρr(p) +

vF
2π
∑
p

1

L
p2 ∣η̂(p)∣2 ,

eiAλ,µH ′e−iAλ,µ =H ′ − vF∑
r
∑
p

1

L

2V̂ (p)
πvF

(−ip)η̂(−p)ρr(p) +
vF
π
∑
p

1

L

2V̂ (p)
πvF

p2 ∣η̂(p)∣2 ,

eiAλ,µPe−iAλ,µ = P − 1

π
∑
p

1

L
Ŵ (−p)ipη̂(p),

(62)

where ∣η̂(p)∣2 = η̂(−p)η̂(p). Therefore, by choosing η̂(p) such that

vF (1 + 2λV̂ (p)/πvF ) ipη̂(p) + µŴ (p) = 0 (63)

is satisfied, we find that the Hamiltonian can be diagonalized using eiSλ in (48):

eiSλeiAλ,µHλ,µe
−iAλ,µe−iSλ =H0 − Tλ +Dλ +Wλ,µ (64)

with

Wλ,µ =Wλ −
µ2vF
2π
∑
p

1

L

Kλ(p)2
vλ(p)2

∣Ŵ (p)∣
2

(65)

using vλ(p) in (24), Kλ(p) in (25), and Wλ in (47), where ∣Ŵ (p)∣2 = Ŵ (−p)Ŵ (p). We note
that the Luttinger parameter Kλ(p) appears in the derivation as

Kλ(p) =
sech 2ϕλ(p)

1 − tanh 2ϕλ(p)
, (66)

which, using (48), gives precisely (25). The ground state of Hλ,µ is thus ∣Ψλ,µ⟩ = e−iAλ,µ ∣Ψλ⟩
with ground state energy Wλ,µ. Since the latter must be finite, this implies that the external
field must satisfy

∑
p

1

L

Kλ(p)2
vλ(p)2

∣Ŵ (p)∣
2
<∞. (67)

This condition can be shown to be satisfied by W (x) in (13). We also note that (63) can be
written as

ipη̂(p) = −µKλ(p)
vλ(p)

Ŵ (p) (68)

using vλ(p) in (24) and Kλ(p) in (25). This together with (61) yields the identity

eiAλ,µρr(p)e−iAλ,µ = ρr(p) +
µ

2π

Kλ(p)
vλ(p)

Ŵ (p) ∀p, (69)

which shows that the external field appears as a c-number added to ρr(p) after the transfor-
mation under eiAλ,µ . Moreover, it follows from (56), (57), and (64) that the exact eigenstates
of Hλ,µ are

∣Ψλ,µ,m⟩ = e−iAλ,µe−iSλ ∣Ψ0,m⟩ (70)
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for m = {(m(p))p≠0 , q+, q−} with m(p) ∈ N and q+, q− ∈ Z, where at most finitely many of the

m(p) are non-zero. The corresponding eigenvalues are

Eλ,µ,m = π
L
vF (q2+ + q2− +

λV̂ (0)
πvF

(q+ + q−)2) +∑
p≠0

vλ(p)∣p∣m(p) +Wλ,µ. (71)

It is clear that the eigenstates of Hλ,µ in (70) form a complete orthonormal basis for the
fermion Fock space F defined in Sec. 3. This implies that Hλ,µ is self-adjoint on F and has
a pure point spectrum. Moreover, it follows from (71) that all eigenvalues of Hλ,µ are ≥Wλ,µ

and that its ground state can be identified as ∣Ψλ,µ⟩ = ∣Ψλ,µ,0⟩ which is clearly non-degenerate.
This also implies that Hλ,µ is bounded from below. This proves Theorem 2.1.

5. EVOLUTION FOLLOWING A QUENCH

Assuming the system is in the ground state ∣Ψλ,µ⟩ of Hλ,µ in (58), we study its evolution
under Hλ′ and compute the expectation values of certain local observables. First, we consider
the total density ρ(x) = ρ+(x) + ρ−(x) and the current j(x) = vF (ρ+(x) − ρ−(x)). Second,
we compute the fermion two-point correlation function. As we will see, the results in (49)
and (69) are the workhorse in these computations. We recall that the expectation values are
first computed for finite L and then we pass to the thermodynamic limit (cf. Remark 2.2).

A. Total density and current: Proof of (22) and (23)

To compute the expectation values of ρ(x) and j(x) with respect to ∣Ψλ′

λ,µ(t)⟩ in (14),

where we recall that ∣Ψλ,µ⟩ = e−iAλ,µe−iSλ ∣Ψ0⟩, we first derive the time evolution of ρr(p) under
Hλ′ , do a similarity transformation under eiSλeiAλ,µ , take the inverse Fourier transform, and
then compute the expectation value with respect to ∣Ψ0⟩. Through repeated use of (49) and
(69) we find the following transformation rule for the densities:

eiSλeiAλ,µeiHλ′ tρr(p)e−iHλ′ te−iAλ,µe−iSλ

= µ

2πvF

Kλ(p)
vλ(p)

Ŵ (p) (vF cos(pvλ′(p)t) − irvλ′(p) sin(pvλ′(p)t))

+ ρr(p) (u+,+λ,λ′(p)e
−iprvλ′(p)t − u−,−λ,λ′(p)e

iprvλ′(p)t)
− ρ−r(p) (u+,−λ,λ′(p)e

−iprvλ′(p)t − u−,+λ,λ′(p)e
iprvλ′(p)t)

(72)

with the coefficients

u++λ,λ′(p) = coshϕλ′(p) cosh(ϕλ′(p) − ϕλ(p)), u−−λ,λ′(p) = sinhϕλ′(p) sinh(ϕλ′(p) − ϕλ(p)),
u+−λ,λ′(p) = coshϕλ′(p) sinh(ϕλ′(p) − ϕλ(p)), u−+λ,λ′(p) = sinhϕλ′(p) cosh(ϕλ′(p) − ϕλ(p)).

(73)
It thus follows, using the inverse Fourier transform ρr(x) = ∑p(1/L)ρr(p)eipx and computing
the expectation value of (72) with respect to ∣Ψ0⟩, that the time evolution of the total density
is

⟨Ψλ′

λ,µ(t)∣ρ(x)∣Ψλ′

λ,µ(t)⟩L =
µ

2π
∑
p

1

L

Kλ(p)
vλ(p)

Ŵ (p)2 cos(pvλ′(p)t)eipx, (74)
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and, similarly, that the time evolution of the current is

⟨Ψλ′

λ,µ(t)∣j(x)∣Ψλ′

λ,µ(t)⟩L =
µ

2π
∑
p

1

L

Kλ(p)
vλ(p)

Ŵ (p)vλ′(p)(−2i sin(pvλ′(p)t))eipx. (75)

The results in (22) and (23) are obtained from (74) and (75) in the thermodynamic limit.

B. Two-point correlation function: Proof of (26)–(28)

To compute the two-point correlation function we use the following lemma which allows
us to obtain the fermion fields ψ±r (x) as limits of regularized fields (for proof see, e.g., [41]
or Proposition 3.7 in [33]):

Lemma 5.1. Let ε > 0 and consider

ψ±r (x; ε) = L−1/2e∓irxπQr/LR±r
r e

∓irxπQr/L exp(∑
p>0

π

Lp
e−εp) exp(∓r∑

p≠0

2π

Lp
ρr(p)eipx−ε∣p∣/2) (76)

with Qr and Rr defined in Sec. 3. Then ψ±r (x; ε) converge to ψ±r (x) as ε→ 0+ in the following
distributional sense:

∫
L/2

−L/2
dxψ±r (x)e±ikx = lim

ε→0+
∫

L/2

−L/2
dxψ±r (x; ε)e±ikx (77)

for all k = π(2n + 1)/L with n ∈ N, where the limit on the right-hand side is in the strong
sense [40] on the domain D defined in Sec. 3.

With these fields, and by again repeatedly using (49) and (69), we find, similar to (72),

eiSλeiAλ,µeiHλ′ tψ±r (x; ε)e−iHλ′ te−iAλ,µe−iSλ

= exp(∓ir µ
vF
∑
p≠0

1

L

Kλ(p)
vλ(p)

Ŵ (p) (vF cos(pvλ′(p)t) − irvλ′(p) sin(pvλ′(p)t))
eipx−ε∣p∣/2

ip
)

×L−1/2e∓irxπQr/LR±r
r e

∓irxπQr/L exp(∑
p>0

π

Lp
e−εp)

× exp(∓r∑
p≠0

2π

Lp
ρr(p) (u+,+λ,λ′(p)e

−iprvλ′(p)t − u−,−λ,λ′(p)e
iprvλ′(p)t) eipx−ε∣p∣/2)

× exp(±r∑
p≠0

2π

Lp
ρ−r(p) (u+,−λ,λ′(p)e

−iprvλ′(p)t − u−,+λ,λ′(p)e
iprvλ′(p)t) eipx−ε∣p∣/2)

(78)

with the coefficients in (73). It follows that the two-point correlation function is

⟨Ψλ′

λ,µ(t)∣ψ+r (x)ψ−r (y)∣Ψλ′

λ,µ(t)⟩L = e−irv
−1
F Ar,L(x,y,t)(x−y)Sr,L(x, y, t) (79)

with

Ar,L(x, y, t) = µ∑
p≠0

1

L

Kλ(p)
vλ(p)

Ŵ (p) (vF cos(pvλ′(p)t) − irvλ′(p) sin(pvλ′(p)t))
eipx − eipy
ip(x − y)

(80)

and
Sr,L(x, y, t) = ⟨Ψλ′

λ,0(t)∣ψ+r (x)ψ−r (y)∣Ψλ′

λ,0(t)⟩L. (81)

The results in (26)–(28) are obtained from (79)–(81) in the thermodynamic limit.
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C. Two-point correlation function: Proof of (29)–(31)

For the proof we use the regularized operators ψqr(x; ε) in Lemma 5.1 for q = ± and ε > 0.
It follows by setting µ = 0 in (78) that

eiSλeiHλ′ tψqr(x; ε)e−iHλ′ te−iSλ = L−1/2e−iqrxπQr/LRqr
r e

−iqrxπQr/LZa,ε,L(t)W q
1,r(x, t; ε)W

q
2,−r(x, t; ε)

(82)
with the time-dependent factor

Za,ε,L(t) = exp(−∑
p>0

π

L

ηλ,λ′(p) − γλ,λ′(p) cos(2pvλ′(p)t)
p

e−εp) (83)

(the dependence on the interaction range a > 0 is commented on further below) and so-called
vertex operators,

W q
1,r(x, t; ε) =

×

×exp(−qr∑
p≠0

2π

Lp
ρr(p)(u++λ,λ′(p)eip(x−rvλ′(p)t) − u−−λ,λ′(p)eip(x+rvλ′(p)t))e−ε∣p∣/2)

×

× ,

W q
2,−r(x, t; ε) =

×

×exp(qr∑
p≠0

2π

Lp
ρ−r(p)(u+−λ,λ′(p)eip(x−rvλ′(p)t) − u−+λ,λ′(p)eip(x+rvλ′(p)t))e−ε∣p∣/2)

×

× ,

(84)
where ×

×⋯×

× denotes boson normal ordering, i.e., all boson creation operators are placed to
the left of all boson annihilation operators; see, e.g., [33] for precise definitions. Using the
coefficients in (73) one finds that ηλ,λ′(p) and γλ,λ′(p) are given by

ηλ,λ′(p) = 2 (u++λ,λ′(p)2 + u−−λ,λ′(p)2 − 1)
= 2 (u+−λ,λ′(p)2 + u−+λ,λ′(p)2)
= cosh 2ϕλ′(p) cosh 2(ϕλ′(p) − ϕλ(p)) − 1

(85)

and
γλ,λ′(p) = 4u++λ,λ′(p)u−−λ,λ′(p)

= 4u+−λ,λ′(p)u−+λ,λ′(p)
= sinh 2ϕλ′(p) sinh 2(ϕλ′(p) − ϕλ(p)),

(86)

respectively. Note that the dependence in (83) on the interaction range a > 0 is indicated to
emphasize that Za,ε,L(t) vanishes in the local limit a→ 0+.

The technical parts of the computations are omitted here since they are identical to those
in [33], where they are explained in detail. We mention only that it follows from (82)–(86)
and Proposition 3.4 in [33] that

Za,ε,L(t)2⟨Ψ0∣W +
1,r(x, t; ε)W +

2,−r(x, t; ε)W −
1,r(y, t; ε)W −

2,−r(y, t; ε)∣Ψ0⟩L

= exp(∑
p>0

2π

L
(e

ipr(x−y)

p
+
ηλ,λ′(p) − γλ,λ′(p) cos(2pvλ′(p)t)

p
(cosp(x − y) − 1)) e−εp) , (87)

where the only factor which does not depend on λ or λ′ corresponds to

⟨Ψ0
0,0(t)∣ψ+r (x)ψ−r (y)∣Ψ0

0,0(t)⟩ = lim
ε→0+

lim
L→∞

1

L
exp(∑

p>0

2π

L

eipr(x−y)

p
e−εp) = i

2πr(x − y) + i0+
.

(88)
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The latter is precisely the two-point correlation function in the thermodynamic limit when
there is no interaction (and no domain wall). Moreover, the operators Qr and Rr in (82) do
not contribute if we take L → ∞ other than that the last identity in (52) puts constraints
on which two-point correlation functions are non-zero: the ground state expectation value

of ψqr (x)ψ
q′

r′(y) for r, r′ = ± and q, q′ = ± can be non-zero only if r = r′ and q = −q′. There-
fore, after taking the limit ε → 0+, the only non-zero two-point correlation function in the
thermodynamic limit is the one given in (29) with ηλ,λ′(p) and γλ,λ′(p) in (30); this follows
from (25), (48), and (82)–(88). Finally, we note that the identity in (31) follows from (85)
and (86) using ηλ(p) = ηλ,λ(p) = cosh 2ϕλ(p) − 1.

6. APPROACH TO STEADY STATE: PROOF OF THEOREM 2.3

The asymptotic behaviors of I(x, t), R(x, t), and Ar(x, y, t) can be studied by considering
the integrals in (22), (23), and (27), respectively. In Appendix A we show that

∣R(x, t) −R∣ ≤ CR
t
, ∣I(x, t) − I ∣ ≤ CI

t
, ∣A±(x, y, t) −A±∣ ≤

CA
t

∀x, y (89)

for certain finite constants CR,CI ,CA > 0 with

R = 0, I = µ

2π

Kλvλ′

vλ
, A± = ±

µ

2

Kλvλ′

vλ
, (90)

which are manifestly translation invariant. From this the result in (33) follows. Similarly,
the asymptotic behavior of Sr(x, y, t) can be studied by considering the integral in (29). In
Appendix A we prove that

lim
t→∞

Sr(x, y, t) =
i

2πr(x − y) + i0+
exp(∫

∞

0
dp
ηλ,λ′(p)

p
(cosp(x − y) − 1)) , (91)

where the contribution containing γλ,λ′(p), which is non-zero if λ ≠ λ′ ≠ 0, has disappeared
in the limit t→∞. The result in (34) follows from (91) using (26) and (33). This completes
the proof of Theorem 2.3.

A result similar to (91) can be derived for the non-equal-time two-point correlation func-
tion ⟨Ψλ′

λ,0(t)∣ψ+r (x+, t+)ψ−r (x−, t−)∣Ψλ′

λ,0(t)⟩ for fields ψ±r (x±, t±) = eiHλ′ t±ψ±r (x±)e−iHλ′ t± with
t± ≪ t using the methods in Sec. 5. Although we omit the explicit expression we note that
it shares the property with (91) that contributions containing γλ,λ′(p) disappear as t →∞.
Moreover, these particular contributions are the only ones which are not time-translation
invariant, one example is a dependence on t++t−, and, since they disappear, time-translation
invariance is recovered asymptotically in time. One could naively try to reproduce this by
treating the final state as a ground state of some Luttinger Hamiltonian (cf. Sec. 7). How-
ever, for λ ≠ λ′ ≠ 0, the same non-equal-time two-point correlation function for such a ground
state of a Luttinger Hamiltonian, which cannot be Hλ′ since ηλ′(p) ≠ ηλ,λ′(p), depends, in
general, on t+ + t−. Therefore, since such a state is not time-translation invariant, it cannot
correspond to the final steady state when λ ≠ λ′ ≠ 0; cf. also [28]. On the other hand, we
show in Sec. 7 that for λ = λ′ the two-point correlation function supports such a description,
but with different chemical potentials for right- and left-moving fermions if µ ≠ 0. Moreover,
since γλ,λ′(p) = 0 if λ = λ′, this is also true for the non-equal-time correlation function.
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7. LUTTINGER MODEL WITH CONSTANT CHEMICAL POTENTIALS:

PROOF OF THEOREM 2.4

We now show that, for λ = λ′, the steady state, obtained asymptotically in time, has the
same equal-time two-point correlation function in the thermodynamic limit as the ground
state of the Hamiltonian in (36) with constant chemical potentials µ± satisfying µ++µ− = 2µ0.
We again recall that the model is defined for finite L (cf. Remark 2.2).

To diagonalize the Hamiltonian H in (36) we use so-called large gauge transformations,
which are implemented by the unitary operators Rr defined in Sec. 3:

R−rwr
r ψ±r′(x)Rrwr

r = e∓irδr,r′wr2πx/Lψ±r′(x),
R−rwr
r ρr′(x)Rrwr

r = ρr′(x) + δr,r′wr/L
(92)

for wr ∈ Z; see, e.g., [33]. We note that the requirement that the wr are integers constrain
the possible values of µr − µ0 for which the following arguments apply, but this will be of
no consequence in the thermodynamic limit and can thus be ignored. For the densities, the
transformation in (92) implies that there is a shift in the zero-mode contribution, which we
will see corresponds to a shift in the ground state. It follows from Sec. 3 that

eiSλHe−iSλ =H0 − Tλ +Dλ +Wλ −∑
r

(µr − µ0)Qr (93)

for H in (36), and therefore

R−w+
+ Rw−

− eiSλHe−iSλRw+
+ R−w−

−

= π
L
vF

⎛
⎝∑r

(Qr +wr)2 +
λV̂ (0)
πvF

(∑
r

Qr +wr)
2⎞
⎠
+Dλ +Wλ −∑

r

(µr − µ0)(Qr +wr). (94)

To make this diagonal we must choose w± = L(µ± − µ0)/2πvF , which yields

R−w+
+ Rw−

− ψ±r (x)Rw+
+ R−w−

− = e∓irv−1F (µr−µ0)xψ±r (x),

R−w+
+ Rw−

− ρr(x)Rw+
+ R−w−

− = ρr(x) +
µr − µ0

2πvF
,

(95)

and

R−w+
+ Rw−

− eiSλHe−iSλRw+
+ R−w−

− =H0 − Tλ +Dλ +Wλ −
L

4πvF
∑
r

(µr − µ0)2 (96)

(where we have used the condition µ+ + µ− = 2µ0). This means that the ground state of H
is ∣Ψ⟩ = Rw+

+ R−w−
− ∣Ψλ⟩ with ground state energy Wλ − L(µ+ − µ−)2/8πvF . We note that ∣Ψ⟩

can also be interpreted as an excited eigenstate of Hλ since it has chiral charges w± ≠ 0 if
µ± ≠ µ0 (cf. (55)). Using the results in Sec. 3 we can construct all eigenstates and eigenvalues
of H for finite L, but we omit the details since they are similar to (55)–(57). This proves
the statements about H in Theorem 2.4; cf. the end of Sec. 4. Moreover, as explained in
Sec. 5, we can compute the two-point correlation function ⟨Ψ∣ψ+r (x)ψ−r (y)∣Ψ⟩L using the first
identity in (95), which in the thermodynamic limit gives the result in (37), but again we omit
the details since they are similar to (82)–(88). This completes the proof of Theorem 2.4.

Lastly, we note that the identities in (8) relating the fields ψ±r (x) and ψ̃±r (x) can be proven
in the same way as (95). The only difference is in the transformation of the corresponding
Hamiltonians: it follows from (7) and (8) that there must be counterterms in (2), not present

in (7), for the Hamiltonians expressed using ψ̃±r (x) and ψ±r (x) to be the same; cf. also [32].
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8. CONCLUDING REMARKS

We studied properties of the Luttinger model with a non-local interaction following a
quench from a domain wall initial state. The evolution of the local observables we consider
is ballistic, but, at the same time, dispersive if λ′ ≠ 0. The dispersion effects appear as
oscillations traveling ahead of the wave fronts as in Fig. 3 and Fig. 4. This is in agreement
with analytical and numerical results in [22, 23] for quantum XXZ spin chains. However,
it should be noted that, since the model in [23] is mapped to the Luttinger model with a
delta-function interaction, the evolution in that case is non-dispersive, similar to our non-
interacting case, and there are divergences which are absent in our results. Asymptotically
in time, the system reaches a steady state which retains memory of the initial state, meaning
there is equilibration (stabilization). This was previously found in [23] for quantum XXZ
spin chains and in [5] for non-interacting bosons. We also showed that, if λ ≠ λ′ ≠ 0, the final
steady state has exponents which are different from those in equilibrium. This generalizes
previous results in [27–29] to more general interaction quenches.

The final state is clearly different from the ground state of Hλ′ in general (i.e., if λ ≠ λ′ ≠ 0
or µ ≠ 0) and thus cannot be described as a thermal state obtained from the usual canonical
ensemble. Since the system is integrable this is not surprising: thermalization in the usual
sense is not expected but rather in the sense of a generalized canonical ensemble; see, e.g.,
[5, 28]. For λ = λ′ we showed that the (equal-time) two-point correlation function for
the final state is equal to that for the ground state of the Hamiltonian H in (36) with
different chemical potentials for right- and left-moving fermions (this can also be verified
for the non-equal-time correlation function). If true for all N -point correlation functions,
this would suggest that the Gibbs measure of the final state is e−βH with H in (36) in the
zero-temperature limit β →∞. Therefore, when λ = λ′, the suggested generalized canonical
ensemble needed to describe the final state consists of the conserved quantities Hλ′ and Q±.
However, for λ ≠ λ′ ≠ 0 we showed that this particular generalized canonical ensemble is too
simple. To test whether a generalized canonical ensemble can describe the final steady state,
when λ ≠ λ′ ≠ 0, additional conserved quantities (which are higher-order polynomials in the
commuting operators np = b+pb−p with b±p in (53)) would have to be included. This problem is
left open.

We stress that universality of conductance is found via a fully non-equilibrium approach.
Previous explanations of this universality were in a near-to-equilibrium setting; see, e.g.,
[36–39]. Whether the conductance in the Luttinger model is renormalized or not has been
debated. Earlier works found that it should be renormalized by the interaction [34], but
later experimental and theoretical results found it to be universal; see, e.g., [37]. We found
that these different results can be reconciled in a dynamical approach, which we believe
sheds new light on this issue. The key observation is that the current and the chemical
potential difference are renormalized by the interaction, but that the renormalizations can-
cel when computing the Landauer conductance [35, 36]. On the other hand, if one uses a
non-renormalized chemical potential difference when defining the conductance, the renor-
malizations do not cancel. This is summarized by the relation in (6), which, in particular,
shows that G = I/(µ+ − µ+) = 1/2π (in units where e = h̵ = 1) is always universal. This
relation also makes clear that our results for the Luttinger model are not in conflict with
the non-universal results in [22] for quantum XXZ spin chains. Indeed, setting λ = λ′ in (33)
yields the non-universal value Gλ,λ = I/µ = Kλ/2π in [34], which is in agreement with the
result in [22] if one takes spin degrees of freedom into account.
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It is natural to conjecture that universality of conductance persists even when no exact so-
lution is available. In equilibrium, renormalization group techniques can explain universality
also in cases without exact solutions. It would be interesting to extend such an approach to
a non-equilibrium setting. Finally, we mention that we expect our method to be applicable
to more general states, such as, e.g., thermal states.
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Appendix A: Asymptotics

To study the asymptotic behavior of R(x, t), I(x, t), Ar(x, y, t), and Sr(x, y, t) in Sec. 6
we use the following lemma (the proof is given at the end of this appendix):

Lemma A.1. Let

F (t) = ⨏
∞

−∞

dp

2π

f(p)
p

eipu(p)t, F0(t) = ⨏
∞

−∞

dp

2π

f(0)
p

eipu(0)t (A1)

(interpreted as Cauchy principal values) with real-valued functions f(p) and u(p) on R
satisfying the following conditions:

1. (f(p) − f(0))p−1 ∈ C1(R) (a.e.),

2. (f(p) − f(0))p−1, d((f(p) − f(0))p−1)/dp ∈ L1(R),
3. (f(p) − f(0))p−1 → 0 as p→ ±∞,

(A2)

and
1. u(p) ∈ C2(R) (a.e.),

2. u(p), du(p)/dp, d2u(p)/dp2 ∈ L1(R),
3. ug(p) = d(u(p)p)/dp > 0 ∀p.

(A3)

Then

∣F (t) − F0(t)∣ ≤
C

t
(A4)

for some finite constant C > 0.

Proof of (89) and (90). If W (x) = 1/2−θ(x), or our regularized version thereof, the Fourier

transform of the external field is Ŵ (p) = i/p or tends to this as p→ 0. Letting u(p) = vλ′(p)
and choosing f(p) as the function corresponding to R(x, t) in (22), I(x, t) in (23), and
Ar(x, y, t) in (27), respectively, the conditions in (16) imply that the conditions in (A2) and
(A3) are satisfied; this follows using (24) and (25). We now note that

⨏
∞

−∞

dp

2π

1

p
cos(pu(0)t) = 0, ⨏

∞

−∞

dp

2π

1

p
sin(pu(0)t) = 1

2
∀t > 0. (A5)

The identities in (89) and (90) then follow from Lemma A.1 and (A5) by splitting eipvλ′(p)t

into real and imaginary parts.
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Proof of (91). We set u(p) = 2vλ′(p) and f(p) = 2πγλ,λ′(p) (cosp(x − y) − 1) in Lemma A.1
and note that the conditions in (16) imply that the conditions in (A2) and (A3) are satisfied;
this follows using (24), (25), and γλ,λ′(p) in (30). It then follows from Lemma A.1 and (A5),
by splitting e2ipvλ′(p)t into real and imaginary parts, that the time-dependence in the integral
in (29) disappears as t→∞.

Proof of Lemma A.1. Define p̃ by the change of variables

u(0)p̃ = u(p)p, u(0)dp̃ = ug(p)dp. (A6)

Also, define f̃(p̃) by

f̃(p̃)dp̃
p̃

= f(p)dp
p

, (A7)

which implies

f̃(p̃) = f(p) u(p)
ug(p)

, f̃(0) = f(0). (A8)

By relabeling p by p̃ in F0(t), we find

F (t) − F0(t) = ⨏
∞

−∞

dp̃

2π

f̃(p̃) − f̃(0)
p̃

eip̃u(0)t, (A9)

and using integration by parts,

F (t) − F0(t) = [ 1

2π

f̃(p̃) − f̃(0)
p̃

−ieip̃u(0)t
u(0)t

]
∞

−∞

+ ⨏
∞

−∞

dp̃

2π

d

dp̃
( f̃(p̃) − f̃(0)

p̃
) ie

ip̃u(0)t

u(0)t
. (A10)

This implies that (A4) holds with

C = 1

u(0) ⨏
∞

−∞

dp̃

2π
∣ d
dp̃

( f̃(p̃) − f̃(0)
p̃

)∣ <∞ (A11)

since the conditions on f(p) in (A2) and u(p) in (A3) imply that the integrand is L1: this
follows from a straightforward computation showing that

f̃(p̃) − f̃(0)
p̃

= (f(p) − f(0)
p

− f(0) d
dp

ln(u(p)
u(0)

)) dp
dp̃

(A12)

and

d

dp̃
( f̃(p̃) − f̃(0)

p̃
) = d

dp
(f(p) − f(0)

p
− f(0) d

dp
ln(u(p)

u(0)
))(dp

dp̃
)
2

+ (f(p) − f(0)
p

− f(0) d
dp

ln(u(p)
u(0)

)) d
2p

dp̃2
(A13)

with dp/dp̃ = u(0)/ug(p) and d2p/dp̃2 = d(u(0)2/2ug(p)2)/dp. (The latter contains the second
derivative of u(p), which explains why the condition on d2u(p)/dp2 in (A3) is needed.)
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Appendix B: General interactions

We consider an equilibrium model of the same form as the one in Sec. 7 but for general
g2- and g4-interactions in g-ology ; see, e.g., [31]. This model has different chemical potentials
for right- and left-moving fermions and λH ′ is decomposed into g2H2 (interaction between
fermions moving in opposite directions) and g4H4 (interaction between fermions moving in
the same direction):

H =H0 + g2H2 + g4H4 −∑
r

(µr − µ0)Qr,

H2 =∑
r

1

L
V̂2(0)QrQ−r +∑

r
∑
p>0

1

L
V̂2(p) (ρr(p)ρ−r(−p) + ρr(−p)ρ−r(p)) ,

H4 =∑
r

1

L
V̂4(0)Q2

r +∑
r
∑
p>0

1

L
V̂4(p) (ρr(p)ρr(−p) + ρr(−p)ρr(p))

(B1)

with µ± constant chemical potentials satisfying µ+ + µ− = 2µ0; the conditions on the g2- and
g4-interactions can be shown to be V̂i(p) = V̂i(−p) for i = 2,4, ∣g2V̂2(p)∣ < πvF + g4V̂4(p) for
all p, and

∑
p>0

pg22V̂2(p)2

πvF (πvF + g4V̂4(p))
<∞. (B2)

We also find it convenient to introduce the following shorthand notation:

g̃2(p) = g2V̂2(p)/πvF , g̃4(p) = g4V̂4(p)/πvF , µ̃r = (µr − µ0)/πvF . (B3)

The renormalized Fermi velocity and Luttinger parameter can then be written

v(p) = vF
√

(1 + g̃4(p))2 − g̃2(p)2, K(p) =
√

(1 + g̃4(p) − g̃2(p))/(1 + g̃4(p) + g̃2(p)), (B4)

respectively, for general g2- and g4-interactions [31]. Moreover, similar to Sec. 7, the possible
values of µ±−µ0 must be integer multiples of an interaction dependent constant (see (B11)),
but as before this will be of no consequence in the thermodynamic limit.

We define a current which is consistent with the continuity equation implied by H. Using
ρr(p, t) = eiHλtρr(p)e−iHt we have ∂tρr(p, t) = ieiHt[H,ρr(p)]e−iHt, where [H0, ρr(p)] is given

in (44), [H2, ρr(p)] = −rvFp(V̂2(p)/πvF )ρ−r(p), and [H4, ρr(p)] = −rvFp(V̂4(p)/πvF )ρr(p).
It follows that

∂t (ρ+(p, t) + ρ−(p, t)) + ipvF (1 + g̃4(p) − g̃2(p)) (ρ+(p, t) − ρ−(p, t)) = 0. (B5)

This is the continuity equation in Fourier space if we define the total density and the current
as ρ(p) = ρ+(p) + ρ−(p) and

j(p) = vF (1 + g̃4(p) − g̃2(p)) (ρ+(p) − ρ−(p)) =K(p)v(p)(ρ+(p) − ρ−(p)), (B6)

respectively. Setting g2 = g4 = λ and V̂2(p) = V̂4(p) = V̂ (p), we recover λH ′ = g2H2 + g4H4

and j(x) = vF (ρ+(x) − ρ−(x)) since v(p) = vλ(p) in (24) and K(p) = Kλ(p) in (25) satisfy
K(p)v(p) = vF . This proves that the total density and the current in the main text are
consistent with the corresponding continuity equation.
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Let ∣Ψ⟩ denote the ground state of H and consider the average current

I = L−1∫
L/2

−L/2
dx ⟨Ψ∣j(x)∣Ψ⟩ = L−1⟨Ψ∣j(p = 0)∣Ψ⟩, (B7)

which corresponds to the steady current in the main text. Only the zero modes contribute
to this current since

I = K(0)v(0)
L

⟨Ψ∣ (Q+ −Q−) ∣Ψ⟩ (B8)

using j(p) in (B6). Similar to Sec. 7, the Hamiltonian H can be diagonalized using a unitary
operator Sg2,g4 and large gauge transformations implemented by the unitary operators R± de-
fined in Sec. 3. It follows that the ground state of H can be written as ∣Ψ⟩ = Rw+

+ R−w−
− ∣Ψg2,g4⟩

with ∣Ψg2,g4⟩ = e−iSg2,g4 ∣Ψ0⟩. Since we are interested in computing ⟨Ψ∣ (Q+ −Q−) ∣Ψ⟩ = w+−w−,
it suffices to consider the zero-mode part of ∣Ψ⟩, meaning that we do not have to determine
the operator Sg2,g4 . However, this can be done as in Sec. 4. We therefore consider only the
zero-mode part of H, which we denote as

H(p = 0) =∑
r

πvF
L

((1 + g̃4(0))Q2
r + g̃2(0)QrQ−r −Lµ̃rQr) . (B9)

The large gauge transformations are defined so that they remove all terms which are linear
in the charge operators Q±,

R−w+
+ Rw−

− H(p = 0)Rw+
+ R−w−

− =H(p = 0) −∑
r

πvF
L

((1 + g̃4(0))wr + g̃2(0)w−r)wr

+ 2∑
r

πvF
L

((1 + g̃4(0))wr + g̃2(0)w−r −Lµ̃r/2) (Qr +wr), (B10)

which, using µ+ + µ− = 2µ0, implies that w± must be chosen as

w± =
Lµ̃±/2

1 + g̃4(0) − g̃2(0)
= L(µr − µ0)

2πK(0)v(0)
. (B11)

From this and (B8), using that ⟨Ψ∣ (Q+ −Q−) ∣Ψ⟩ = w+−w−, we find that the factors K(0)v(0)
cancel:

I = K(0)v(0)
L

L(µ+ − µ−)
2πK(0)v(0)

= µ+ − µ−
2π

. (B12)

This corresponds to a universal conductance G = 1/2π, i.e., the conductance quantum found
in the main text; the computation given here is essentially an alternative derivation of the
result in [36], but for a less general family of Hamiltonians.

We also show that it is possible to read the chemical potential difference from the two-
point correlation function, as done in the main text. Indeed, from (92), it follows that

⟨Ψ∣ψ+r (x)ψ−r (y)∣Ψ⟩ = e∓irwr2π(x−y)/L⟨Ψg2,g4 ∣ψ+r (x)ψ−r (y)∣Ψg2,g4⟩, (B13)

which, using (B11), implies that the two-point correlation function is

⟨Ψ∣ψ+r (x)ψ−r (y)∣Ψ⟩ = e−ir(K(0)v(0))−1(µr−µ0)(x−y)⟨Ψg2,g4 ∣ψ+r (x)ψ−r (y)∣Ψg2,g4⟩. (B14)

The latter is of the same form as (37) but with the factor (K(0)v(0))−1 replacing v−1F in the

phase on the right-hand side. In particular, setting g2 = g4 = λ and V̂2(p) = V̂4(p) = V̂ (p), we
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recall that K(0)v(0) = vF , while in general, the new factor cancels the factor K(0)v(0) in
the current (given by (B6) for p = 0). This shows that universality of conductance holds for
general g2- and g4-interactions and not only for the particular interaction in the main text.

As a final remark, we mention that the formulas given in the main text for the evolution
of the Luttinger model following a quench can be shown to remain valid for general g2- and
g4-interactions if one replaces vλ(p) and Kλ(p) with v(p) and K(p) defined in (B4).
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