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Models of space-charge affected thermal-field emission from protrusions, able to incorporate the

effects of both surface roughness and elongated field emitter structures in beam optics codes, are

desirable but difficult. The models proposed here treat the meso-scale diode region separate from

the micro-scale regions characteristic of the emission sites. The consequences of discrete emission

events are given for both one-dimensional (sheets of charge) and three dimensional (rings

of charge) models: in the former, results converge to steady state conditions found by theory

(e.g., Rokhlenko et al. [J. Appl. Phys. 107, 014904 (2010)]) but show oscillatory structure as they

do. Surface roughness or geometric features are handled using a ring of charge model, from which

the image charges are found and used to modify the apex field and emitted current. The roughness

model is shown to have additional constraints related to the discrete nature of electron charge. The

ability of a unit cell model to treat field emitter structures and incorporate surface roughness effects

inside a beam optics code is assessed. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4921186]

I. INTRODUCTION

Field emission sources generate high brightness elec-

tron beams that may meet the needs of particle accelerators,

high power microwave (HPM) and x-ray sources, and vac-

uum electronic devices. The high current densities are a

consequence of quantum mechanical tunneling through an

emission barrier reduced in height and width by high elec-

tric fields at the surface. As a consequence, compared to

other electron sources, such as photoemission and thermal

emission, field emitter sources are much more profoundly

affected by space charge near a single emission site,1–3

space charge in the anode-cathode (AK) gap due to many

emitters,4–6 and field reductions at the apex associated with

other close proximity emission structures otherwise known

as “shielding” or “screening.”7–9

The present analysis is the first part of a two part study

undertaken to understand these interacting and degrading

effects. The first and present study treats space charge and

how it is affected by surface roughness or geometric features

modeled as hemispheres. A distinction between the one-

dimensional and three-dimensional models is the constraint

imposed by the discrete nature of electron charge. The quan-

tization of charge matters greatly in the treatment of emis-

sion from nano-scale emission sites and the behavior of

space charge altered field emission near them: consequently,

the discreteness model is introduced into the continuum 1D

models as well to illuminate the correspondence and, more

importantly, to emphasize that the nature of surface rough-

ness affects how the discrete sheets of charge in the 1D

model must be interpreted. The second part, reported sepa-

rately, extends the roughness model to treat elongated wire-

like emitters for the investigation of shielding effects on the

emission process.10,11 Taken together, such studies describe

how space charge affects field (and therefore current) by

means of field enhancement, shielding, changes to the tun-

neling barrier, and image charges associated with elongated

structures, particularly long carbon fiber wire-like emitters

presently undergoing characterization.12 The models pro-

posed are to be amenable to the shielding studies and there-

fore will not possess the rigor of more exact and simple 2D

model systems13,14 but will account for 3D effects. A method

is proposed whereby the models can be integrated into beam

optics codes, where field emission is difficult to treat because

of the many orders of magnitude difference in length scales

between emission site and electron gun,15 and where dis-

placement current effects would otherwise complicate the

usage of a transit time model.16 This is to be accomplished

by means of a unit cell construction, the dimensions of which

are dictated by the mean separation between adjacent emis-

sion structures. The space charge effects within the unit cell

can be analyzed using a ring charge model developed herein

to estimate the reduction of the field at the apex of an emitter

due to previously emitted charge. The virtual anode of thea)kevin.jensen@nrl.navy.mil
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unit cell is close to the emission site so that the unit cell can

be treated quasi-statically, thereby allowing the particle-in-

cell (PIC) code to handle problems (such as transit time

instabilities) that would otherwise be difficult or impossible

to treat.

Regarding units and notation, q is the elementary unit

charge such that the electron charge is �q, and it is the con-

vention here to attach q to fields and potentials, and measure

charge in units of q. Thus, F ¼ qE is a force (units of [eV/

nm]), and the image charge potential VðxÞ ¼ quðxÞ ¼
lþ U� Fx� Q=x as well as the anode potential Va ¼ qua

are in units of energy [eV]. The term Q ¼ q2=16pe0 ¼ 0:36

eV nm is used in preference to e0. The usage of V and F
instead of u and E subtly modifies equations related to them,

but the discussion will nevertheless speak of field and poten-

tial as is customary, although what is under discussion are

instead forces and potential energies. Because of the units

chosen (eV, fs, nm, and q¼ 1) a numerical equivalence

exists between quantities expressed in [V] and [eV] as well

as [GV/m] and [eV/nm]. Unless stated otherwise, conven-

tions follow those used in Refs. 17 and 18.

Regarding terminology, the planar (1D) conditions will

be contrasted repeatedly with the hemispherical (3D) condi-

tions. It may be thought that rotationally symmetric emitters

should properly be described as 2D. However, the introduc-

tion of adjacent emitters breaks the rotational symmetry.

Therefore, whether or not a single emitter is under discus-

sion, the circumstance will be referred to generically as 3D.

Additionally, the convention will also be that q and r refer

to number densities rather than charge densities, so that the

sign of the electron charge modifies conventional equations

involving F, J, and q or r (e.g., Poisson’s equation).

II. SPACE CHARGE AND FIELD EMISSION

The onset of space charge affected flow departs from the

conventional Child-Langmuir limit when the emission mech-

anism is field emission in both one dimension3,19–21 and

multi dimensions.6,14,22 The 1D analysis finds solutions that

simultaneously satisfy Poisson’s equation for electron den-

sity q and the Fowler Nordheim equation for current density

JFN (Eq. (A4)) using the assumption that current density (in

[A/cm2]) and number density are related via J ¼ �qqhvi and

that hvi � 0 at the cathode surface. A more intuitive but less

exact account is obtained using a transit time model,17,23,24

which can be used to show that field emission can experience

space charge limited (SCL) emission even though (as is com-

mon to assume) the potential energy does not pass through a

maximum nor does the field at the surface vanish, but rather

the field strength is limited, a point emphasized by van der

Ziel.25 It is therefore preferable here to speak of space charge

affected field emission (SCAFE) (or “field-emitted vacuum

space charge” (FEVSC) as Forbes19 does), rather than SCL

emission, to avoid activating intuitions which do not apply.

The dependency of SCAFE on surface field F can result

in difficult to reconcile visualizations of what is occurring

during the onset of space charge affected current flow. A

common understanding of SCL current, leading to the Child

Langmuir relation6 (Eq. (B1)), is visualized as constant

current density injected into the anode-cathode gap until the

field at the surface of the emitter vanishes (F! 0), but that

would entail no field emission (JFN ! 0). In 1D, the solution

is to require F and J(F) to simultaneously satisfy Poisson’s

equation and the Fowler Nordheim equation1,19,21 (contrast

with complimentary efforts to find consistent solutions using

particle-in-cell codes20 and simulation26), but the transition

from a planar cathode to roughened surfaces (or an array of

emitters) underscores the problem faced when attempting to

reconcile steady state current with a microscopically rough

or structured cathode, apart from the complexity already

introduced by considering a small AK gap.27,28 A possible

solution uses a transit time model for separate regimes, the

meso-scale regime governing discrete sheets of charge emit-

ted from a planar cathode with a micro scale regime treating

small surface structure or field emitter sites, with the later

forming a unit cell within the former. The nature of discrete

emission events, as in beam optics codes, differs in each

case.

A. Transit time approximation

The transit time formalism17,23,24 relates the field at the

surface to the field across the AK gap separation in the ab-

sence of space charge (Fo ¼ Va=D), the temperature and

field dependent current density at the surface J(F, T) (Eq.

(A1)), and the transit time (s) measuring how long an elec-

tron takes to cross the AK gap by

Fo ¼ Fþ q

e0

NsJ Fð Þs Fð Þ; (1)

where Ns is a factor of order unity to bring the transit time

model into line with the Child-Langmuir equation when the

surface field vanishes (see discussion surrounding Eq. (9) of

Ref. 17): it is 9/8 if the ballistic transit time sðFÞ ! so is

used. The temperature dependence in J is suppressed as T
will be held constant.

In the absence of space charge in the AK gap, a solitary

electron will experience a constant force Fo ¼ Va=D acting

on it that will accelerate it to the anode. The resulting

“ballistic” transit time so for that situation is well known

from elementary kinematics to be

so ¼
ffiffiffiffiffiffiffiffiffiffi
2mD

Fo

r
: (2)

When a continuous and time-independent current density

J(F) for a surface field F is present, the transit time sðFÞ has

previously been shown to be29

s Fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
8mVa

p

F
1þ 1þ qJ Fð Þ

eoF2

ffiffiffiffiffiffiffiffiffiffiffi
8mVa

p� �1=2
" #�1

: (3)

Although the actual transit time s exceeds the ballistic transit

time so, the difference is not substantial when J(F) is small

compared to e0F2=ðq
ffiffiffiffiffiffiffiffiffiffiffi
8mVa

p
Þ. The current density J(F) can-

not increase without limit: as more charge is injected into the

AK gap, space charge forces suppress the surface F. In the

extreme case when a single sheet is in the AK gap with

194902-2 Jensen et al. J. Appl. Phys. 117, 194902 (2015)
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sufficient charge density to suppress F completely while the

sheet is adjacent to the cathode, a second characteristic

transit time results (see Eq. (9) below) and can be taken as

an opposite limit.

Important features of sheet charge models appear in the

works of Kishek and Lau30 and Christenson et al.31 The pres-

ent approach summarizes key points. Let the position of the

sheet in the AK gap be specified by x ¼ sD, where 0 � s � 1

is a scaled position. Further let the force between the sheet

and the anode be denoted Fþ, and that between the sheet and

cathode be F�. The relation Va ¼ VðxÞ þ ðVa � VðxÞÞ is then

Fo ¼ F�sþ Fþð1� sÞ: (4)

The forces F6 are related by Gauss’s Law32 Fþ � F�
¼ aFo, where ro � Foeo=q2 ¼ Fo=ð16pQÞ and the sheet

charge number density r � aro. Simultaneous solutions

of these equations result in (compare Eqs. (16) and (17) of

Ref. 17)

Fþ ¼ ð1þ asÞFo; (5)

F� ¼ ð1� að1� sÞÞFo: (6)

The force acting on the sheet of charge and causing it to

accelerate is the average of the forces ahead of it and behind

it (as can be determined by finding the force on a finite thick-

ness uniform slab of charge and taking the thickness of it to

zero). Therefore, the force equation from which the position

is determined is given by

d2s

dt2
¼ Fþ þ F�

2mD
¼ Fo

mD
2� aþ 2asð Þ; (7)

the structure of which is visible in Eq. (3a) of Ref. 30 for the

two-sheet solution in the limit that the second sheet vanishes.

This point will be revisited below in Eq. (17) when the

position-dependence of the field produced by a sheet of

charge in an AK gap is reconsidered. The solution of Eq. (7)

for the transit time, defined by the equation sðsÞ ¼ 1 (equiva-

lently, xðsÞ ¼ D) is

s að Þ ¼ so

ð1

0

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s 2� a 1� sð Þð Þ

p : (8)

Consequently, sð0Þ ¼ so recovers the ballistic approxima-

tion. The opposite limit, sð1Þ is the transit time for a sheet of

charge with the maximum charge density qro, and it is

sð1Þ ¼
ffiffiffi
2
p

so lnð1þ
ffiffiffi
2
p
Þ ¼ 1:2465sð0Þ: (9)

Compare to Eq. (20) of Ref. 17 for an equivalent expression.

Observe that Eqs. (3) and (9) are different, the former refer-

ring to continuous emission, and the latter to the emission of

a single sheet of charge. It is seen that the single sheet transit

time for a¼ 1 is 25% larger than the ballistic transit time for

a¼ 0, that is, they do not differ greatly.

The first of two approximations that shall therefore be

made herein is in relation to the transit time: the smaller ballis-

tic transit time so shall be used for all transit times encountered

(usage of this lower limit will offset other approximations

below, and it is accurate when the emission current is small).

This is equivalent to taking a sheet of charge out of the AK gap

(i.e., assuming it has reached the anode) when it has been in the

gap for longer than so. In effect, usage of the ballistic transit

time underestimates the amount of charge in the AK gap. Its

use results in the approximation

Fo � Fþ 9qso Fð Þ
8e0

J Fð Þ; (10)

where the “ballistic transit time” notation is now revised to

be soðFÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mD=F

p
such that soðFÞ is evaluated using the

surface field F rather than Fo. The value of F which satisfies

Eq. (10) is close to that which is obtained through the simul-

taneous solution of Poisson’s equation and the Fowler-

Nordheim equation.21

As examples, consider a planar diode with an AK gap of

D¼ 10 lm and a cathode work function of U ¼ 4:5 eV (typi-

cal of metals and similar to carbon fibers). Let the field

across the AK gap in the absence of space charge be

Fo¼ 6 eV/nm. For room temperature conditions, J � JFN

(Eq. (A4)) for the purposes of this example. Equation (10)

then requires F=Fo ¼ 0:94117, whereas the exact relation

(compare Eq. (9) of Ref. 21)

JFN fFoð Þ
JCL Va;Dð Þ ¼

1

9
2þ 2� 3fð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3f

p� �
; (11)

where Fo ¼ Va=D; f ¼ F=Fo, and Eqs. (A4) and (B1) are

used, demands f¼ 0.93169. The difference between sðFÞ and

so is approximately 1%. The transit time approach is there-

fore reasonable. Changing Fo to 10 eV/nm, Eq. (10) then

requires f¼ 0.68613, whereas the exact relation demands

f¼ 0.67488. The difference between sðFÞ and so is now

approximately 3%. The relaxation time approach remains

reasonable even when field emission is high. The results of

this exercise demonstrates that current density, not transit

time, is the primary determinant of F for field emission, as a

consequence of the very strong variation of J(F) with F—

this allows the consideration of field emission to be treated

differently than other emission mechanisms, where the

transit time is much more influential, and enables an oppor-

tunity in that a reasonable and easily calculated transit time

soðFÞ may be used, simplifying the quantification of space

charge effects on the emission barrier.

The use of the surface field F in the evaluation of the

ballistic transit time soðFÞ rather than the larger field Fo off-

sets some of the underestimation of surface field reduction

due to space charge in the AK gap. A more important offset

will be due to a second approximation that shall be made,

which has the same effect as overestimating the effect of

space charge in the AK gap, and concerns the usage of Eq.

(19) below. The adequacy of the two approximations will be

assessed in Sec. III.

B. Surface roughness

Simulating the transition from field emission dominated

current density to space charge affected flow using PIC

codes20,33 is desirable given PIC’s ability to track particle

194902-3 Jensen et al. J. Appl. Phys. 117, 194902 (2015)
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motion and monitor the duration of time charge remains in

the AK gap for finite-sized emission regions (similar com-

ments apply to molecular dynamics (MD) simulations26).

For uniform and extended planar emitters (e.g., thermionic

cathodes) findings comport well with analytical methods,34

but field emission from small active regions significantly

burdens simulation. In particular, surface roughness is prob-

lematic for PIC.18

In the 1D model, there is liberty in how many discrete

sheets n ¼ s=Dt are used to approximate continuum emis-

sion and so there is freedom in the choice of Dt. The pres-

ence of surface roughness and its associated field

enhancement change matters, but because the effects of sur-

face roughness are only dominant near the cathode, compo-

nents of the 1D formalism can be profitably retained. The

differences between the 1D and 3D models are then related

to local field enhancement and the possibility of shielding

due to geometry.

Surface roughness can be modeled as a speckling of a

plane with small hemispherical bumps (“bosses”) of radius

a. Field variation over a bump is governed by

FðhÞ ¼ 3Fo cosðhÞ, where h is the polar angle (see discussion

surrounding Eq. (32) below). Consequently, the apex field is

Ftip ¼ 3Fo ¼ 3Va=D (b¼ 3). Let the current from a hemi-

sphere be designated Iboss, which depends on the current den-

sity JðFtipÞ and the “notional emission area” factor g(F)

(a measure of the fraction of the hemispherical surface that

is emitting18,35 and given by Eq. (34) which scales with

the actual emission area). For Fo ¼ 2:5 eV/nm, then

gð3FoÞ ¼ 0:083882. Assume that the hemispheres are spaced

sufficiently widely apart so that they do not shield each other

appreciably: a “tip-to-tip” separation of dtt ¼ 5a is adequate,

with hemispheres being on a square grid, larger than but

comparable to the “optimal” prescription (Ref. 9, and refer-

ences therein). The impact of shielding is related to the sepa-

ration between emission sites, and therefore dictates the

dimensions of the unit cell model treating a single site.

The average current density is Jo ¼ IbossðVaÞ=d2
tt, with all

of the current originating from the hemispheres as the field is

too weak at the surface between the hemispheres for appreci-

able emission (e.g., JFNðFoÞd2
tt=IbossðVaÞ � 4:7� 10�7 for

Fo ¼ 2:5 eV/nm). Unlike the 1D model, in the limit of very

small emission currents, the emission must be treated as a se-

ries of discrete emission events, rather than a continuous flow

of charge. Thus, a characteristic time Dt ¼ q=IbossðVaÞ is the

average time between emission events and is constrained

because the electron charge is discrete. After the electrons

move several dtt away from the surface, the lattice of emitted

charge can again be modeled as a “sheet of charge.”

Using Jo ¼ IbossðVaÞ=d2
tt in place of JFN in Eq. (10), with

Va ¼ FoD; Fo ¼ 2:5 eV/nm and D¼ 10 lm results in F ¼
0:93137Fo being the self-consistent field. Such a reduction

modifies the current per hemisphere to 46% of the space

charge free condition. However, Dt ¼ 1:62soðFoÞ so that for

a nontrivial fraction of the time, no charge is in the gap when

the current is (on average) space charge affected. The prob-

lem therefore is affected by similar physics to that described

by Zhu and Ang36 who investigate the relation of space

charge limited current to the Coulomb blockade regime.

Observing that the emission of charge is a statistical event

for which Dt is the mean time between emission events deep-

ens the mystery: there will be times where more charge is in

the gap than permitted by Eq. (10), and times where less is,

and so the emission will be noisy. Further, the role of space

charge in the discrete-emission limit therefore differs subtly

but importantly from a conventional intuition regarding the

role of space charge in the continuous-emission limit: in the

later, charge in the AK gap reduces the quantity of emitted

current in a direct, immediate, and continuous way, while in

the former, the presence of charge in the AK gap reduces the

probability of subsequent emission events on average but

does not prevent the presence of quantities of charge in the

gap that are above-average or below-average for a given sur-

face field. Finally, emission will also occur off-axis, and that

will introduce transverse velocity effects and transit time

changes, complications with no analog in the 1D formula-

tion. Hence, the 3D models based on hemispheres entail

additional physics.

Several conclusions follow. First, steady and continuous

emission as implied by the transit time approach gives way

to the complexity of fluctuating discrete emission events

governed by the magnitude of unit electron charge that on

average give rise to Jo. Second, in the low current limit, the

role played by space charge is to change the mean time
between the emission events for each hemisphere. Third,

when the hemispheres are modified so that they are either in

more dense arrays or elongated in shape, their susceptibility

to shielding effects from adjacent structures may magnify,

making the analysis more complex.

In Sec. III, the consideration of the planar or 1D prob-

lem as random emission events and the subsequent changes

in emission that result is given and focuses on fluctuations

caused by meso-scale sheets of charge density. In Sec. IV,

roughness is introduced and its impact on emission by

changes to the image charge, the relation between the trajec-

tory arc in the AK gap and the transit time, and the effect on

emission probability that results is related to the fluctuations

caused by micro-scale emission events that are localized to

an emission site associated with a geometric feature. The na-

ture of emission probability, intrinsic to both, is related to

Poisson statistics.

C. Poisson statistics

In the absence of space charge effects, electron emission

events are generally considered to be independent and emit-

ted at random times. The number emitted per unit time is

given by a Poisson distribution37–40 and results in a shot

noise spectrum.41,42 That is, the probability of emission in

any (infinitesimally small) time interval dt is kdt, while the

probability of k emissions during a time interval of duration t
is

pk tð Þ ¼ ktð Þk

k!
e�kt; (12)

for k ¼ 0; 1; 2; ::: In particular, the probability of no emis-

sion, k¼ 0, is p0ðtÞ ¼ e�kt, while the probably of having an

194902-4 Jensen et al. J. Appl. Phys. 117, 194902 (2015)
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emission in the (infinitesimal) time interval dt after waiting a

time t is just e�ktkdt, where k ¼ 1=Dt is the average time

between emissions. In the 1D models, the events correspond

to the emission of a sheet of charge with charge density

qr ¼ JDt. In the 3D models, the events correspond to the

emission of a bunch of charge with a total charge IbossDt.
The interpretation of k will change between the sheet and

bunch models, but to simplify the discussion, both will be

referred to as “events,” and the average number of events per

unit time is the average current (3D) or current density (1D).

If the AK gap is large and the emission strong, then the

number of events per unit time should be significant. A

bump of radius 5 nm with an apex field of 3Fo ¼ 7:5 eV/nm

will have a micro-scale current of Iboss¼ 6.3 lA, so that an

electron is emitted every Dt ¼ q=Iboss � 25 fs on average.

For an AK gap of D¼ 10 lm, a transit time of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mD=Fo

p
�

200 fs results, suggesting that there are about 8 events on av-

erage in the gap. The meso-scale sheet charge density is then

determined by the tip-to-tip spacing dtt by qr ¼ IbossDt=d2
tt.

Equation (12) then specifies the probability that in fact there

are k sheets instead, and is shown in Figure 1.

Consequently, it is evident that some emission events

can be very closely spaced to each other. If the probability

of an event not occurring in a time t is p0ðtÞ ¼ expð�ktÞ,
then for N emission events, each event corresponding to an

individual Dtj for how long after the previous event it

occurred, can be grouped into bins. Doing so results in

Figure 2, although N and k are changed to N¼ 4096 and

k¼ 1/(32 fs) to make the behavior of interest more appa-

rent. It is clear that many events occur for Dtj a fraction of

the average Dt.
The previous discussion treats k as unaffected by prior

emission events, but field emission is inordinately sensitive

to space charge forces. The reduction of the surface field by

a small amount greatly affects JFNðFÞ=JFNðFoÞ. For standard

metal parameters, the sensitivity is shown in Figure 3 for the

cases of 1% (F=Fo ¼ 0:99) and 5% (F=Fo ¼ 0:95). As a

consequence of that sensitivity, structure is imposed on F(t).

III. DISCRETE EMISSION FROM A PLANE

A. Sheet charge models

In a continuum model, current and number density q are

related by J ¼ �qqv. In steady state, current is without fluctu-

ation (field emission requires the maintenance of substantial

fields at the surface, so that return trajectories as seen in Ref.

34 do not modify the analysis). On the other hand, if sheets of

varying charge density are randomly emitted, then fluctuations

in the occurrence of emission events are a natural and

expected consequence. Sheet-like emission models reveal

time dependent behavior from planar thermionic emission

structures,37 and the accuracy of sheet models has been

remarked upon for the simulation of thermionic cathodes.43

The average number of events per unit time is k. If the

emission times are distributed, the variance is minimized by

taking k!1 such that the continuous emission model21 is

recovered. In nature, however, the charge emitted is fixed by

the charge of the electron, and that affects the three dimen-

sional models, but for one dimension where sheets of charge

FIG. 1. Distribution of events in the AK gap as per Eq. (12) (red line) in

four simulations. Events randomly occur until the time separation between

first and last exceeds the transit time s¼ 200 fs. Instances where there are no
events in the AK gap occur, as do instances where there are multiples of the

average number of 8.

FIG. 2. Comparison of the number of Dtj (“count”) falling into bins of size

10=64k using Eq. (23) (K), compared to an acceptance/rejection algorithm

(AR) and a binned Monte Carlo method (IMC) described in Appendix C. N
is the total number of Dtj. A curve Ndte�kDtj is overlaid (Exp). The dashed

vertical line is Dt ¼ 1=k.

FIG. 3. Ratio of the current density for a small reduction in field (F < Fo)

for standard metal parameters (l¼ 7 eV and U ¼ 4:5 eV).
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density qr are emitted, there remains some freedom in the

choice of both r and k.

The surface field F(t) will depend on the number of

sheets in the AK gap, and on the charge density qr
per sheet. The simplest case is a sheet charge density of

qro ¼ e0Fo so that there is at most one sheet in the AK gap,

that is FðtÞ ¼ Fo if no sheet was emitted in the time interval

½t� s; t� so kðtÞ ¼ ko while kðtÞ ¼ 0 if there was an emis-

sion event in that interval. The single sheet transit time is

known exactly.17 The situation is much more complicated

when k–sheets (k> 1) are emitted. There are alternative

ways of modeling the situation: for example, rðtÞ can

depend on F(t) with k held fixed, or the emission can be

taken to be periodic. Of the various so-called toy models

that are possible, the ones here are based on the transit time

s associated with field emission and the nature of the fields

produced by a sheet of charge density qr. As the sheet

accelerates across the anode-cathode gap, its presence

reduces the field at the surface of the cathode until such

time as the sheet is absorbed by the anode. The degree to

which the jth sheet of n sheets reduces the surface field

depends on its charge density qrj but also, as shall be

shown, its position xj as well.

The cumulative effect of the n sheets invokes methods

behind the two-sheet model of Kishek and Lau30 and the

many sheet model leading to Eqs. (7) and (A3) of

Christenson et al.31 Consider first the field reduction at the

surface of the cathode due to the presence of one sheet of

charge in the AK gap. The surface term F is determined as

follows. Poisson’s equation, using the conventions described

in Section I (in particular, Q ¼ q2=ð16pe0Þ), is

d2

dx2
V xð Þ ¼ 16pQq xð Þ; (13)

where the negative charge of the electron (�q) and the usage

of a number density off-sets the negative sign conventionally

present, and where the number charge density qðxÞ ¼ rd
ðx� �xðtÞÞ, where �xðtÞ is the trajectory of the sheet. The gen-

eral solution is the sum of the particular solution V ! Vp in

Eq. (13) and the homogeneous solution Vh determined from

d2VhðxÞ=dx2 ¼ 0. The boundary conditions are Vhð0Þ ¼ 0

and VhðDÞ ¼ Va and Vpð0Þ ¼ VpðDÞ ¼ 0. The potential

energy V(x) is the sum, or VðxÞ ¼ VpðxÞ þ VhðxÞ. VhðxÞ is

given by VhðxÞ ¼ xVa=D. VpðxÞ invokes Gauss’s law32 and

relates the sheet charge density to the difference of the forces

on each side of the sheet or

Vp xð Þ � Vp 0ð Þ
x

� Vp Dð Þ � Vp xð Þ
D� x

¼ 16pQr; (14)

which, in light of the boundary conditions and introducing

the notation r=ð16pQÞ � aFo, becomes

Vp xð Þ
D
þ Vp xð Þ

D� x
¼ aFo: (15)

The general solution is then

V xð Þ ¼ xFo � aFo
x

D
D� xð Þ: (16)

The force F at the surface due to a sheet of charge in the

AK gap at position x is therefore governed by ratio of the

potential energy at the location of the sheet V(x) with the dis-

tance to the sheet x or

F ¼ Fo � aFo 1� x

D

� �
: (17)

Observe that this is the force acting on the sheet; the force

on a particle external to the plane of the sheet satisfies a simi-

lar equation but with a! a=2.

For a sheet in the AK gap, the impact of the sheet is

greater the closer it is to the cathode surface (in contrast to a

sheet of charge in free space for which the field created by it

is independent of distance). When there are n sheets in the

gap, then, by superposition,

F ¼ Fo � 16pQ
Xn

j¼1
rj 1� xj

D

� �
; (18)

¼ Fo 1�
Xn

j¼1
ajð1� sjÞ

n o
; (19)

a result equivalent to Eq. (A5) of Ref. 31 when the observa-

tion point is the surface of the cathode. The second approxi-

mation to be proposed concerns how this result is handled:

evaluating Eq. (19) is complex because the positions of the

sheets xj (equivalently, sj) are required, and they are not in

general available until the solution to Eq. (19) is available.

Stated another way, finding F necessitates finding both rj

and xj, but xj is dependent on the field that existed on the sur-

face at the time of emission, and the position (“trajectory”)

of the sheet as it is accelerated in a time-dependent field,

both of which are unknown. A simple solution is therefore

not forthcoming for analytical methods, although intensive

methods such as those of Caflisch and Rosin34 can make

headway. A simple solution, though, is highly desirable

given its utility in guiding approximations when surface

roughness is present, and particularly for modeling elongated

or wire-like structures as are under consideration.12,18

The proposed simple, or qualitative, solution is as fol-

lows. The reduction of the surface field dF is given by the

second term of Eq. (19). Contrast this to a model which does

not include the position dependence, or dFo ¼
Pn0

j¼1 aj, but

where n0 < n is the smaller number of sheets in the gap

because the sheets are allowed to stay in the gap only for a

time so. For purposes of a representative model, a single

sheet traveling ballistically will follow xðtÞ ¼ Dðt=sÞ2, and

so xj=D � ðtj=sÞ2 ¼ ðj=nÞ2. Next, because the current density

J(F) is exponentially dependent on 1=F, then rj will depend

on the sum of the sheets emitted prior to the jth sheet: thus,

let rj � ro exp ð�aðs� tjÞ=sÞ, where a is a parameter that

governs how rapidly the charge density declines for subse-

quently emitted sheets. The questions are then, what error is

expected from the neglect of the position dependence in Eq.

(19) in the single sheet limit (a!1) and in the steady state

limit (a! 0)?

For the single sheet limit, a	 1 corresponds to the

actual transit time approaching the value given by Eq. (9)

(the charge density of the first sheet dominates the others),
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and because the difference between sðFÞ and soðFÞ is only

25%, let n ¼ 5n0=4. Then, if the emission events are uni-

formly spaced, the ratio of the actual field reduction dF to

dFo behaves as

dF

dFo
�

Xn

j¼1

n2 � j2
� �

e�a n�jð Þ=n

X4n=5

j¼1

e�a n�jð Þ=n

: (20)

The behavior of Eq. (20) for various n (chosen so that n0

¼ 4n=5 is integer) are shown in Figure 4.

For the steady state limit, a! 0 entails the aj become

equal, and so

lim
a!0

dF

dFo
¼ 5

6
1� 3

4n
� 1

n2

� �
; (21)

which converges to 0.8333 for n!1 and is 0.7 for n¼ 5.

In both cases, it is seen that the approximations (hence-

forth referred to as the s� s approximation), first of neglect-

ing the sj term in dF and second of using the ballistic transit

time so as the transit time, are sufficient to enable a reasona-

ble qualitative model from which behavior can be inferred,

although a loss of a quantitatively predictive capability is

expected. When a surface roughness model is introduced, the

circumstances improve, as near the cathode surface is where

a “unit cell model” of surface roughness is sought, and it is

there that the s� s model performs well.

The s� s approximation is equivalent to letting the field

at the surface of the cathode be governed by

Fjþ1 ¼ Fj �
qDt

e0

J Fjð Þ: (22)

Immediately after emission starts, the surface field begins to

drop in increments which causes the current density to decline

until sheets begin to be absorbed at the anode and no longer

contribute to the surface field reduction. The assumption frees

the model from the need to monitor and update the location of

the sheets: only the duration of time they remain in the AK

gap matters. One therefore expects the initial oscillations (due

to either uniformly or randomly emitted events) to damp over

time, converging on a result comparable to the continuum

limit of Eq. (11). The initial oscillations, which will be shown

subsequently, is reflected in the more accurate numerical sim-

ulations of Feng and Verboncoeur (see Figure 5 of Ref. 20),

and more recently in the work of Torfason et al.,26 whose

Figure 4 in the case of a large emission area is anticipated by

the results of the simple models below, as shall be shown.

Let the sheets be labeled according to their position with

respect to the surface: if there are n sheets in the AK gap,

then the sheet n is closest to the anode and the i¼ 1 sheet is

just off the cathode surface. The indexing of Dt differs from

ti: Dt1 refers to the first sheet emitted and is closest to the an-

ode. Consequently, the time steps are calculated according to

tiþ1 ¼ ti þ Dtnþ1�i. Only those sheets for which ti � so are

allowed to contribute to the field reduction at the surface, a

restatement of the approximation to use the ballistic transit

time so over the actual transit time sðFÞ, which in steady

state will underestimate the field reduction by the small

amount JðFÞðsðFÞ � soÞ=e0. The three models (labeled M1

trough M3), therefore, refer to three cases of increasing com-

plexity in the treatment of Dtj and the emission probability in

the context of the s� s approximation.

M1: For uniform emission events, Dtj ¼ Dt for all

sheets: the variation in the sheets is therefore contained in

the changing sheet charge density rj ¼ JðFjÞDt. There are n
sheets in the gap at any time and nDt ¼ so.

M2: If the emission of a sheet of charge is a random

event, then the time a sheet of charge is emitted after the

prior one, or Dti, is found by

Dti ¼ �lnðriÞDt; (23)

where ri is a uniformly distributed random number in the

range between 0 and 1, and Dt is the mean value. The basis

for this equation is given in Appendix C.

M3: The probability of emission is a random event, gov-

erned by the ratio of the current density to the maximum cur-

rent density, and the emission of a sheet is randomly dictated

using a Monte Carlo (MC) algorithm. The position of the

sheets can be tracked so that Eq. (19) can be used.

For the second model, the Dtj that result as a conse-

quence of Eq. (23) have been shown in Figure 2 as the line

labeled “K,” compared to a standard method of choosing Dtj

using acceptance/rejection techniques labeled “A/R” (a third

method, based on the last “alternate” method of Appendix C,

is labeled “IMC”). The agreement is good. Observe that

some values of Dtj can be comparable to the transit time so.

The third, or Monte Carlo, model is significantly different

than the previous two, and will be discussed separately. It

can either mimic the s� s approximation or keep the

position-dependence of Eq. (19), and so it serves to quantify

the cost of the s� s assumptions.

All findings shall be compared to the analysis of

Rokhlenko et al., which determined that the steady state

FIG. 4. The ratio given by Eq. (19) as a increases for various n. As a and n
become large, the single sheet model of Eq. (9) is approximated, and so the

ratio should approach unity.
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self-consistent field emission current density is (Eq. (9) of

Ref. 21)

J Fð Þ
JCL Va;Dð Þ � j ¼ 1

9
2þ 2� 3fð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3f

p� �
; (24)

where f ¼ FD=Va; JðFÞ ! JFNðFÞ is Eq. (A4), and JCL is

Eq. (B1). The values of j and f are then found numerically

(bisection followed by a correction using finite difference

methods).

B. Results: Models 1 and 2

For metal parameters (l¼ 7 eV, U ¼ 4:5 eV) at low

temperatures (JðFÞ � JFNðFÞ), the solution to Eq. (24) is sat-

isfied by f¼ 0.86005 and j¼ 0.18252 if Fo¼ 7 eV/nm and

D¼ 10 lm. These values represent the expected asymptotic

limits of the time-dependent analyses. Consider two choices

of Dt for the time-dependent analysis. If so=Dt ¼ n ¼ 100,

then Figure 5 results. By contrast, if so=Dt ¼ 1000, then

Figure 6 results. In these figures, the smooth curves (light

blue for field, purple for current) represent M1 results, and

the jagged curves (dark blue for field, red for current) repre-

sent the M2 results. The nature of the oscillations are compa-

rable to the numerical results in Figure 5(b) of Feng and

Verboncoeur20 or Torfason et al.26 Significantly, such oscil-

lations are seen in the analytic one dimensional treatment of

Rokhlenko and Lebowitz44 (their Figure 1): although the

sharp cusps evident in the present work are softened by com-

parison, the damped oscillations are evident. Thus, when

n ¼ so=Dt is large then M2 better approximates M1. The

more important point, however, is that if the value of n and

therefore Dt is limited by an independent requirement (such

as the discrete nature of electron charge and the spacing of

emission sites), then progressively small values of n result in

progressively noisier behavior in J½FðtÞ�, and will have con-

sequences with how noise is introduced into a simulation.

Representative evaluations make the point. For

Fo¼ 7 eV/nm, JFNðFoÞ ¼ 2:374� 107 A/cm2. For the choice

Dt ¼ 1:27 fs, the sheet charge density is 1 electron per

(23 nm)2. If shielding effects from adjacent geometric struc-

tures approximating surface roughness affect emission and

cause emission events to be correlated from one site to the

next, then smaller n values may be more physical. The hemi-

spherical bump model is intended to address this, as the intro-

duction of roughness sets a length scale that allows a

consideration of physical processes to affect the time scale,

but it will require a consideration of how the planar image

charge is modified in the vicinity of a curved surface and the

contribution of emitted charge in suppressing the surface field.

C. Results: Model 3

Let the probability that an electron is not emitted in a

time t be p ¼ expð�ktÞ. A sequence of dtj such that tj ¼Pj
k¼1 dtk entails that the probability PðtjÞ that an electron

will be emitted at tj is

PðtjÞ ¼ pðdt1Þ…pðdtj�1Þð1� pðdtjÞÞ (25)

or the product of probabilities that the electron is not emitted

(p) in the j� 1 steps before tj but emitted (1� p) on the last

step dtj. If the time steps are equally spaced,

X1
j¼1

PðtjÞ ¼
X1
j¼1

e�ðj�1Þkdtð1� e�kdtÞ ¼ 1: (26)

P(t) is representable as the number of emission events to

the number of emission attempts. For emission in sheets, the

accumulation of sheets constitutes the injection of charge

into the anode-cathode gap (a model applied to thermal

emission by Birdsall and Bridges37). The number of elec-

trons emitted per unit area is JðFÞDt=q, and the number of

attempts is JmaxDt=q. In terms of the supply function f(E) (in

a notation following Ref. 45)

J Fð Þ
Jmax

¼

ð1
0

D Eð Þf Eð ÞdEð1
0

f Eð ÞdE

� R Fð Þ; (27)

where E ¼ Ex is the normal energy (or energy into the bar-

rier). For metals, Jmax ¼ ð3=16Þqqð�hkF=mÞ ¼ mql2=ð4p2�h3Þ

FIG. 5. Evolution of F(t) (Eq. (22)) and J½FðtÞ� for Fo¼ 7 eV/nm and

D¼ 10 lm for Dt ¼ so=100 and Dtj from Eq. (23). Gray lines determined

from Eq. (11).

FIG. 6. Same as Figure 5 but for Dt ¼ so=1000 and Dtj from Eq. (23).

194902-8 Jensen et al. J. Appl. Phys. 117, 194902 (2015)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

141.212.160.197 On: Tue, 19 May 2015 16:27:56



in the T ! 0 K limit, where q ¼ k3
F=3p2 is the number den-

sity q of the zero-temperature electron gas. Letting J ¼ JFN

and using Eq. (A4), gives the ratio in Eq. (27), defined as

R(F), as

R Fð Þ ¼ �h2F2��

4mUl2t2o

U2e6

4Q

 !�

exp �BU3=2

F

� �
: (28)

The probability that an electron is emitted in time t is {1 �
(the probability that it is not)}, or

1� exp f�kðFÞtg ¼ RðFÞ: (29)

Let the ratio of the time step dt for the Monte Carlo simula-

tion to the characteristic time Dt defined by the current den-

sity be n ¼ Dt=dt. The probability that an emission event

does not occur in a time tj is

pðtjÞ ¼
Yj

l¼0
ð1� RjÞ

n o1=n

; (30)

where the shorthand Rj � RðFjÞ is used. When sheets of

charge are in the AK gap, then in the s� s approximation

Fj ¼ Fo �
qDt

e0

Xj�1

l¼0

J Flð Þ; (31)

and because ð1� RjÞ1=n < ð1� R0Þ1=n
it is seen that the

effect of space charge is to reduce the probability p(t) by a

small amount over the transit time of the previously emitted

sheet across the AK gap. Thus, space charge reduces the av-

erage current even when the characteristic time Dt is larger

than the transit time s.

A code to model the emission of uniform sheets of elec-

trons based on the quantum mechanical probability of emis-

sion while also keeping track of the electron sheets as they

transit the diode gap using the Monte Carlo approach was

developed. The acceleration that each sheet experiences is

not constant, but rather a function of time due to the shield-

ing of the vacuum field by the space charge between each

sheet and the anode. The initial velocity of the sheet is

assumed to be negligible (zero). Charge overtaking (in which

one sheet moves ahead of a previously emitted sheet) of

these sheets is observed in these simulations. The simulation

begins with the initial sheet of charge being emitted at time

t¼ 0 and then steps forward by a specified time step, dt. The

positions of the sheets of charge are then advanced according

to the accelerating field that they experience, given by Fj.

Any sheets passing the location of the anode are considered

collected and removed from the simulation.

Following the kinematic update to each sheet’s position, a

check is made to see if the cathode emits another sheet of

charge. The emission event at the cathode is determined as fol-

lows. The probability of a sheet of electrons not being emitted

within a time tj ¼ jdt since the last emission is given by Eq.

(30) as influenced by Eq. (28). Observe that this constitutes a

separate requirement on the emission process distinct from,

albeit related to, that behind the second model (M2). The algo-

rithm computes the probability of an event at the cathode and

samples a random number from a uniform distribution to

check for the event (an “acceptance / rejection” algorithm). If

an event occurs, a sheet of charge is created at the cathode

(z¼ 0) carrying a charge density of r ¼ JFNðFÞDtj, where

Dtj ¼ jdt is the time between this emission and the previous

emission. Observe that on average, hDtji ¼ Dt. Then the time

step is advanced and the process is repeated for a specified

amount of time. For the initial emission at time t¼ 0, a value

of Dtj ¼ s0=100, where s0 is the characteristic transit time, is

chosen. If no sheet of charge is emitted, the time step is

advanced without the creation of any sheet charges.

The code keeps track of several different quantities: the

distribution of emission times and transit times, the field and

current density at the surface, the charge collected at the an-

ode, and the sheet’s trajectories as a function of time. The

transit time of the individual sheets in the MC code can be

tracked and compared to the ballistic transit time. Not sur-

prisingly, the actual transit times are larger but the nature of

the spread in transit times is as shown in Figure 7. As a result

of the spread, and given the AK gap separation distance,

occasions occur when one sheet can potentially overtake

another; such instances do not occur in models M1 and M2.

Although infrequent, overtaking events are observed in M3.

The results of the MC simulation for the s� s approxi-

mation are shown in Figure 8, where the ratio of the current

density to its initial value, along with the ratio of the surface

field to Va=D, is shown as a function of time as measured in

units of the ballistic transit time. Compare the findings to

those shown in Figures 5 and 6. The MC algorithm using the

s� s approximation is most closely similar to M2 but the fi-

nite time step dt and the form of the attempt probability R(F)

combine to affect how the oscillations unfold, most impor-

tantly in that the time to the next emission event cannot be

arbitrarily small as Eq. (23) would allow (occurring when ri

is arbitrarily close to 1). This can be seen in a histogram of

the values Dtj takes in a typical simulation as shown in

Figure 11. In contrast to the behavior of Figure 2, the short

time Dtj’s are being suppressed in the MC simulation, due to

FIG. 7. Histogram of transit times s compared to the ballistic transit time

so ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mD=Fo

p
and expressed as a percentage above so in the s� s approx-

imation. The size of the bins is 0.5. A similar histogram is obtained when

the position dependence of the sheets as per Eq. (19) is included.
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the manner in which R(F) in Eq. (2) affects the probability of

the next emission event. A reduction of the short time events

in number has the effect of dampening fluctuations and oscil-

lations in JðtÞ=Jð0Þ as the sheets of charge are spread out

more than would be if Dtj were governed by Eq. (23) alone.

Observe that such histograms depend only on the magnitude

of the surface field, and it is therefore unsurprising that the

s� s approximation gives comparable results to when the

position dependence of Eq. (19) is kept.

The results of the MC simulation for when the s� s
approximation is not made are shown in Figure 9, where the

consequences of including the position dependence of the

sheet of charges in Eq. (19) is evident in the transition from

a staircase-like profile to a sawtooth-like shape: the jth sheet

is pushed towards the cathode by the sheets ahead of it,

pushed towards the anode by the sheets behind it, and the

force components of all the sheets are dependent upon their

position in the AK gap. By comparison to the s� s model,

the simulation is consequently much more intensive.

Observe that qualitatively the figure is quite similar to Figure

1 of the analytical treatment of Rokhlenko and Lebowitz.44

Specifically, the weakening of a sheet’s ability to reduce the

surface field as it approaches the anode as a consequence of

the ðD� xÞ=D factor in Eq. (17) changes the injection of

charge into the gap and tends to smooth out (larger) oscilla-

tions that otherwise occur if the influence of the leading

sheets, which have the largest r, are not attenuated as Eq.

(17) prescribes. Importantly, such a position dependence is

additionally evident in MD simulations that do not use a

sheet-charge model: compare the results of the predictions of

the position-dependent M3 simulation to the MD simulations

of Torfason et al.,26 as reproduced in Figure 10. In that

work, the field was held at a lower value (F¼ 2 eV/nm) for a

lower work function U¼ 2 eV). In contrast to the planar

model using sheets herein, the MD simulations launched

individual electrons from a cathode region of finite extent:

FIG. 8. Monte Carlo simulations using the s� s approximation of the field

emission planar diode for time steps dt ¼ 0.0127 fs (short) and 0.1275 fs

(long), where the emission probability is related to the number of electrons

emitted per attempt (Eq. (28)).

FIG. 9. Monte Carlo simulations accounting for the sheet position depend-

ence of the field reduction at the surface compared to the M1 results (com-

pare with Fig. 1 of Ref. 44).

FIG. 10. The molecular dynamics simulations of Torfason et al. (data

obtained from Figure 4 for L ¼ 2:5 lm and D ¼ 1 lm, with U ¼ 2:0 eV,

F¼ 2 eV/nm) compared to the M1 s� s simulation. See text for discussion.

Observe the similarity of the MD results to the position-dependent M3

results of Figure 9.

FIG. 11. Histogram of the next emission event Dtj. Size of the bin is 0.5.

Observe that in the larger bins, the counts appear to decline exponentially,

but in the smaller bins, the counts decline as well. A similar histogram is

obtained when the position dependence of the sheets as per Eq. (19) is

included.
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the square emitting area had a length of L ¼ 2:5 lm, and the

anode-cathode separation was D ¼ 1 lm. The beam cross-

section was therefore allowed to expand under space charge

forces. Nevertheless, the MD simulations show the same ba-

sic relation to the M1 results that the position-dependent M3

results do.

A critical feature of the MC algorithm is the ability to

chose the charge density of the sheets of charge that can be

emitted per time step. In the hemispherical model (consid-

ered in Section IV), a constraint on this is in place due to the

discrete nature of the electron charge.

IV. DISCRETE EMISSION FROM A HEMISPHERE

The simplest modification to the planar model is a hemi-

sphere on plane model. It can be generalized to multiple pro-

trusions, and provides a simple image charge approximation,

but the field lines, and therefore transit times must be calcu-

lated numerically or obtained approximately.18 The hemi-

sphere is a limiting case of a prolate spheroidal geometry

which analytically provides field lines, but multiple protru-

sions require the introduction of a Line Charge Model

(LCM) and will therefore be considered in a separate

work.10,11

The introduction of protrusions results in a range of

transit times, non-uniform emission patterns, and image

charge contributions that change with distance. In the case of

a hemisphere, the influence of the image charge changes

with distance depending on the size of the hemisphere, many

image charges are present of which a subset dominate, and

for rotationally symmetric structures the image charges are

in the shape of rings of charge rather than point charges for

the evaluation of the apex current density.

Geometric features on the surface gives rise to field

enhancement factors (alternately called the “magnification”

factors) that, as Kosmahl46 argued are “(t)o a good approxi-
mation. proportional to the height. and inversely propor-
tional to the radius of the tip in conical structures with

rotational symmetry.” (emphasis in original.) An assembly

of protrusions can be modeled from single protrusion solu-

tions using superposition, although nearby protrusions intro-

duce a shielding effect that affects the putative apex radius

and the shape of protrusions modeled from charge distribu-

tions in the Point and Line Charge Models. In contrast, phys-

ical field emitters do not change shape due to adjacent tips.

Conditions at the apex matter most whereas the exact shape

of boundaries further away become less consequential: for

the same tip radius and apex field, the current from a protru-

sion only weakly depends on the shape of the body of the

emitter, and then mostly through the behavior of the notional

area factor g(F) (Eq. (34)). For example, g(F) for a hemi-

sphere is 1=ðb� � þ 4Þ compared to 1=ðb� � þ 1Þ for an

ellipsoid:45 for F¼ 5 eV/nm and U ¼ 4:5 eV (giving

b¼ 13.04 and � ¼ 0:7728), the ellipsoid notional area is

82% that of the hemisphere.

A. Potential, field, and current

Using notations and methods of a previous treatment on

emittance and surface roughness,18 the potential V(x) for a

hemisphere on a flat plane immersed in a background field

Fo is

V r; hð Þ ¼ Vo � For cos h 1� a

r

� �3
" #

; (32)

where h is the polar angle, and Vo¼ 0 if the cathode is

grounded (or Vo ¼ lþ U as for the emission equations

where the bottom of the conduction band is the zero energy).

Along the surface of the hemisphere (r¼ a), the field is nor-

mal to the surface and given by Fða; hÞ ¼ 3Fo cos h. The

field enhancement is therefore bðhÞ � F=Fo ¼ 3 cos h.

Although bðhÞ varies over the surface of the emitter, condi-

tions at the apex matter most: therefore the convention here

is that b without an argument refers to the apex value, or

bðhÞ ¼ b cos h, with b¼ 3 and Ftip ¼ bFo for a hemisphere.

Total current I is obtained by integrating the current density

J over the surface X, accounting for geometry and field vari-

ation.45 Total current Iboss is evaluated by

Iboss ¼
ð

X
JðFðXÞÞdX � 2pa2gðFtipÞJðFtipÞ; (33)

where X specifies the surface. For a hemisphere, using Eq.

(A4) for J(F) gives18

g Fð Þ ¼ 1

b

ð1
0

1þ x

b

� ���4

e�xdx � 1

b� � þ 4
; (34)

where x ¼ bðsec h� 1Þ and b � BU3=2=F is typically large,

and 2pa2gðFÞ being the notional emission area which meas-

ures (but is smaller than) the fraction of the hemispherical

surface that is emitting: for U ¼ 4:5 eV, gðFÞ ¼ F=
ð65:207þ 3:2272FÞ for F in [eV/nm].

The integrated current fraction DðhÞ is defined by18

DðhÞ ¼ IðhÞ=Iboss, with Dðp=2Þ ¼ 1, where h replaces the

upper limit of integration in Eq. (33) when dX ¼ 2pa2

sin hdh, or equivalently, the upper limit in Eq. (34) is replaced

with xmax ¼ bðsec h� 1Þ. The current emitted from a ribbon

of width adh between the angles ha and hb is therefore

dIðhÞ ¼ IbossðDðhbÞ � DðhaÞÞ: (35)

B. Ring image charge

The image charge approximation to finding the potential

of a charged particle outside a conducting sphere32 is the ba-

sis for the ring model introduced now and the prolate sphe-

roidal model to be introduced separately.11 A charge outside

a conducting sphere embedded in a flat plane with a close an-

ode, shown in Figure 12, matches boundary conditions by

the placement of image charges, the first of which is deter-

mined by considering the sphere in isolation. At a point ~r ,

the potential due to a charge �q and its image qi � jq is

given by Vð~rÞ ¼ 4Qðr�1
2 � jr�1

1 Þ where 4Q ¼ q2=4pe0.

Demanding that Vða; hÞ ¼ 0 requires

4Q

P 1� c cos hð Þ1=2
¼ 4jQ

P0 1� c0 cos hð Þ1=2
; (36)
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where c � 2ad=P2 and c0 � 2ad0=P02 with P �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ d2
p

and P0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ d02
p

, where d0 is the distance from the center

of the sphere to the image charge qi. Equation (36) is satis-

fied when 1=P ¼ j=P0 and c ¼ c0, which requires d0 ¼ a2=d
and j ¼ a=d. The cathode and anode planes contribute pla-

nar image charges to maintain boundary conditions, and

those image charges create others ad infinitum, but for a

charge q just outside the sphere, and for D large compared to

a, the four charges shown in Figure 12 dominate.

The influence of the image charge q0 on the emitted

electron �q is given by 4jQ=P0ð1� c0Þ for on-axis domi-

nated emission, or

Vimage rð Þ ¼ 2Qa

r2 � a2
; (37)

for which, when r ¼ aþ x, gives Q=x½1þ ðx=2aÞ� which

asymptotically approaches the standard planar image charge

potential Q / x when x=a! 0.

Emission from the hemisphere is rotationally symmetric,

and can be represented as a sum over rings of charge, one of

which is shown in Figure 13. If the edge of the ring is a dis-

tance R from the center of the hemisphere, and a distance r
from the apex of the hemisphere, then the plane of the ring is

a distance R cos h� a above the apex of the hemisphere. The

field due to that ring is evaluated by letting the charge per

unit length of the ring be r ¼ kq=2pR sin h, where kq is the

total charge on the ring. A small segment of the ring ad/
therefore contributes a factor dFz ¼ qrR sin hd/ sin u=r2 to

the field at the apex of the hemisphere, where / describes

rotations about the axis of symmetry. The sum of the fields

due to all of the elements of the ring produces a total field in

the ẑ� direction only given by

Fz ¼ �
4kQ R cos h� að Þ

R2 þ a2 � 2aR cos h½ �3=2
; (38)

with the sign indicating the field is down (into the hemi-

sphere). Because each charge element of the ring can make

use of the analysis behind Eq. (36), it follows that the image

charge ring in the hemisphere F0z is given by

F0z ¼ �
R

a

� �
4kQ R� a cos hð Þ

R2 þ a2 � 2aR cos h½ �3=2
: (39)

The total field due to the rings is then the sum of Eqs. (38)

and (39): it is

Fz þ F0z ¼ �
4kQ R2 � a2ð Þ

a R2 þ a2 � 2Ra cos hð Þ3=2
: (40)

Here, the parameter k is the number of electrons contained in

the ring. A single ring at a distance R ¼ 3a from the center of

the hemisphere of radius a¼ 5 nm such that h ¼ p=4, as in

Figure 13, will suppress a background field of Fo¼ 3 eV/nm

(that is, drive the apex field to 0) if k¼ 270. Under conditions

of actual emission, however, multiple rings will correspond to

an emission “event.” Each of the rings have their height and

radius change as a consequence of their motion as the elec-

trons in a ring move along their trajectory arcs. Therefore, to

use the ring model to investigate space charge, the charge for

each ring kj and the time dependent radius qðtÞ and height z(t)
of each ring must be found,.

There are two approaches for specifying the charge kj in

a ring. The first uses the integrand of Eq. (34). The initial

conditions of the ring ðqjð0Þ; zjð0ÞÞ are specified by the mid-

dle of the ribbon strip defining the differential emission ele-

ment. Passing over to a summation rather than integration,

gðFÞ ¼
Ð

dg! gðFÞ
PN

j¼1 fj where hj is discretized to N
locations to characterize N rings according to

hj �
2j� 1ð Þp

4N
� j� 1

2

� �
Dh; (41)

so that h1=2 ¼ 0 and hNþ1=2 ¼ p=2. For a ribbon of center ra-

dius a sin hj and width aDh, the fraction fj of the total emitted

charge contained in the ribbon is approximated by

fj �
exp �/j�1=2

� �� exp �/jþ1=2

� �
g Fð Þ

; (42)

where /x ¼ ðsec hx � 1Þ=ðb� � þ 4Þ. Therefore, this

method requires bookkeeping of the ring charges, as would

be required to estimate the impact of space charge on emit-

tance in the surface roughness model.

The second approach is to make use of the notional area

approximation of Ref. 45 and is motivated by the observation

FIG. 13. Ring of charge and associated parameters to determine the apex

field. h is the polar angle and u is the angle between r and the plane of the

ring.

FIG. 12. Hemisphere on a flat surface. Anode is a distance D. Dominant

image charges are shown for an external electron �q (red). For D	 d � a,

the image charge within the hemisphere dominates all others.
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that along the ẑ�axis, V(z) for a ring with charge kq, of ra-

dius q, and a distance z away, is VringðzÞ ¼ kQ=R, where

R2 ¼ q2 þ z2: that is, it is equivalent to a point charge a dis-

tance R away where R is the distance to any element of the

ring. The approximation simplifies the analysis for rings

originating from a hemisphere such that their positions do

not depart significantly from a hemispherical shape during

their transit. As the current from a hemisphere depends on

the product of an area factor with apex current density,

where the former varies weakly and the later strongly with

field, the approximation is reasonable and enables a formula-

tion more amenable to analysis. The notional angle is then

given by (Eq. (26) of Ref. 45)

cos hn ¼ 1�
ðp=2

0

sin h
J F hð Þð Þ
J F 0ð Þð Þ dh; (43)

� bþ 3� �
bþ 4� � ; (44)

where the “n” subscript refers to “notional” angle. It is con-

venient to introduce g � cos hn. Even though the current

density on axis is largest, the charge associated with its ring

is affected by the emission area ribbon, and so the charge on

the j�q ring peaks near cos hj � g, as shown in Figure 14, an

observation with consequences for the emittance associated

with a field emitter as pointed out by Whaley (see Figure 9

of Ref. 47). The notional approximation represents the cu-

mulative effect of all the differential rings as one ring origi-

nating at h ¼ hn with a number of electrons k ¼ IbossDt=q.

The approximation is only appropriate as a simple model to

quantify estimates of space charge effects that is convenient

for analysis: it is not sufficient to address the impact of space

charge on emittance in the surface roughness model.

C. Height, radius, and transit time

The transit time of an electron from the hemisphere to a

planar anode a distance D away may be estimated using the

impulse approximation.45 In the absence of space charge, in

a field of Fo with an initial velocity of rivF cos h, where vF ¼

ffiffiffiffiffiffiffiffiffiffiffi
2l=m

p
and ri is the magnitude of the impulse modification

(the “i” subscript to distinguish it from the surface charge

density r factor), the motion is ballistic. The coordinates of

the jth ring of radius qjðtÞ and height zjðtÞ are therefore

zj tð Þ ¼ aþ rivFtð Þcos hj þ
Fo

2m
t2; (45)

qjðtÞ ¼ ðaþ rivFtÞ sin hj; (46)

and RiðtÞ (corresponding to R in Eq. (40)) is

RjðtÞ2 ¼ zjðtÞ2 þ qjðtÞ2: (47)

The transit time sj of the jth ring for an anode-cathode (AK)

separation of D is therefore a solution of the quadratic

equation

Fo

2m
sj

2 þ aþ rivFsjð Þcos hj � D ¼ 0: (48)

The approximation, developed in Ref. 45, for ri is

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 7Foa

2�hkF

r
; (49)

where �hkF is the Fermi momentum. Electrons emitted at

larger angles h have smaller initial velocities in the ẑ-direc-

tion, and although all final energies of all electrons at the an-

ode are the same, those emitted off-axis have a transverse

velocity component E? ¼ ð1=2ÞmðrivF sin hÞ2: the cumula-

tive effect of both results in the transit time off-axis being

larger than on, as shown in Figure 15 for D¼ 10 lm, for

which the on-axis transit time is

s 0ð Þ ¼ 2D

vb

f 1� dð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2 1� dð Þ

p
þ 1

 !
; (50)

where d ¼ a=D and f ¼ vb=vo with ð1=2Þmv2
b ¼ FoD. For f

large and d negligible,

FIG. 14. The ratio JðhÞ=Jð0Þ and proportion of emitted current

sin hJðhÞ=Jð0Þ as a function of polar angle h. hnðFÞ is the notional angle.

Numbers in parentheses refer to Fo in units of eV/nm.

FIG. 15. Off-axis sj ¼ sðhjÞ compared to on-axis sð0Þ transit times for

l¼ 7 eV, U ¼ 4:5 eV, a¼ 10 nm, and D¼ 10 lm, in the impulse approxima-

tion. Grey dashed lines indicate the locations of the notional angle hnðFÞ for

increasing F from left to right, defined in Eq. (43).
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s hð Þ
s 0ð Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 þ 1

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 þ cos2h
p

þ cos h
: (51)

For the conditions of Figure 15, f ¼ 17.03, 17.77, 18.12, and

18.32, for 3Fo¼ 3, 5, 7, and 9 eV/nm, respectively. The on-

axis transit time for the lowest field is sð0Þ ¼ 317:8 fs, When

D decreases for the same a (d increases), the differences

become more pronounced. Again for Fo¼ 1 eV/nm, then for

D ¼ 1 and 0.1 lm (d ¼ 0.01 and 0.1), sð0Þ ¼ 88.14 and

17.82 fs, and f ¼ 5.39 and 1.70, respectively, resulting in

100%½ðsðp=2Þ=sð0ÞÞ � 1� ¼ 21% and 89%, respectively,

with the intermediate h�dependence scaling very similar to

that shown in Figure 15. Thus, micro- and nano-gaps are

more susceptible to transit time induced effects resulting

from off-axis parabolic trajectories than are gaps 10’s of

microns or more, even though field emission becomes negli-

gible after h � 50
 when Fo¼ 3 eV/nm (and smaller for

lower fields). This conforms with intuition in that with

respect to the transit time, as D increases, the influence of

the velocity vz increases over the duration of the transit (i.e.,

vz=v! 1), but the contribution of vq is fixed by conditions

near the hemisphere and its influence is therefore limited to

distances comparable to the hemisphere radius, as assumed

in the impulse approximation.

A consequence of the variation of transit time with

launch angle is that the rings of charge will spread out during

transport across the AK gap, so that the sharp changes in sur-

face field suggested by the 1D sheet charge model will

instead be softened: in the ring charge model, a natural

damping is thereby introduced. To leading order, and using

Eq. (51) and FoD ¼ ð1=2ÞmðfvoÞ2, the difference in arrival

times of the largest possible ring (h ¼ p=2) with the on-axis

ring is

s p=2ð Þ � s 0ð Þ � mvo

Fo
1� 1

2f

� �
; (52)

and therefore, due to the general largeness of 2f, does not

vary greatly as D is changed for a given Fo, even though

sð0Þ does. Because sðhnÞ scales with sðp=2Þ, as in Figure 15,

the conclusion is that the usage of a single notional ring to

represent all the rings does not run afoul of a distribution in

arrival times of the numerous rings which it represents, par-

ticularly as the charge per ring for the rings with cos hj � g
dominate.

The decrement of the apex field on the hemisphere

DFðtÞ, therefore, is given by summing over all the rings as

they move away from the hemisphere with their coordinates

governed by Eqs. (45) and (46) or

DF tð Þ ¼ �
XN

j¼1

4kjQ

aN

qj tð Þ2 þ zj tð Þ2 � a2

qj tð Þ2 þ zj tð Þ � a
� �2

h i3=2
; (53)

where kj is the charge carried by ring j. In the notional

approximation, a single ring is launched at the notional

angle hn with the entire emitted charge and the trajectory of

that ring to be determined. For that single ring (compare

Eq. (40))

DFn tð Þ ¼ � 4kQ

a

qn tð Þ2 þ zn tð Þ2 � a2

qn tð Þ2 þ zn tð Þ � að Þ2
h i3=2

; (54)

where hj ! hn in the definition of q and z (the subscript “n”

denotes “notional” and not an index). The notional trajecto-

ries are shown in Figure 16 for representative background

fields.

D. Unit cell space charge

Field emission along the hemisphere will be strongly

suppressed until such time as the notional ring moves far

enough away that the field at the apex can rebound. The time

to do so is a field-dependent characteristic time. The depend-

ence of space charge on surface field, which in turn depends

on the nature of surface roughness, thereby introduces an

increased sensitivity to space charge compared to the 1D

models (although the field reduction at the surface of the

cathode due to a sheet of charge being dependent on the

sheet’s distance has an analog in that a ring of charge

approaching the anode generates an image ring beyond the

anode plane, and so the influence of the ring weakens further

as it approaches the anode). When roughness is present, the

background field Fo is lower, in the case of a hemisphere, by

a factor of 3 compared to fields assumed in the 1D models.

In turn, the ballistic transit time will be larger by the same

factor, and therefore the time that charge is in the AK gap

increases. Therefore, an understanding of space charge

forces is more involved than in the 1D analyses, even though

at a distance of several hemisphere radii from the surface

(smaller when the pitch of the hemispheres is greater), the

equipotential lines flatten.

This suggests that a “unit cell” can be demarcated such

that within it, notional rings of radius qðtÞ follow trajectories

dictated by Eqs. (45) and (46) with hj replaced by the

notional angle hn. Once z(t) crosses the “virtual anode” of

the unit cell,45 the 1D description for sheets of charge

resumes, with the charge density per sheet given by

IbossDt=d2
tt. The dimensions of the cell can be determined in

FIG. 16. Notional ring trajectories for background fields of 1 eV/nm (blue

open circle), 2 eV/nm (green closed circle), and 3 eV/nm (red open square).

The labeled points are fractions of a ballistic transit time so ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mD=Fo

p
.
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two ways. The first, which will be used below, is to set the

“virtual anode” at the location where DFnðtÞ of Eq. (54)

ceases to appreciably affect emission. The second, which

will be used in follow-on studies for the understanding of

shielding effects,11 sets the virtual anode at a location com-

parable to the pitch, or tip-to-tip separation, of the hemi-

spheres or emission sites (if wires or ellipsoids), where the

cumulative interaction of all the emitters is such that the

equipotential lines flatten to a degree that renders the approx-

imation appropriate. Observe that either method will identify

when space charge effects within the unit cell become impor-

tant, but not what the self-consistent space charge limited

flow is, which requires the coupling of trajectory-based unit

cell models with particle-in-cell simulations (and is under

development). Therefore, for purposes of the unit cell study,

D will refer to the distance to the virtual anode in the unit

cell, and the boss will be treated as if there were no others.

Emission is space charge affected when the current Iboss

of Eq. (33) becomes a fraction � of what it would be were

Ftip ¼ 3Fo not reduced, that is

� � Iboss 3Fo � DFnð Þ
Iboss 3Foð Þ

� exp � bo þ 3� �ð Þ
3Fo

DFn

� �
; (55)

where bo ¼ BU3=2=3Fo, and assuming that for room tempera-

ture conditions, field emission current density can be modeled

using JFN. Note that � is not necessarily small. Use Eq. (54)

to introduce the function U(s) defined by DFnðssÞ
� �ð4kQ=aÞUðsÞ, where s ¼ t=s. This equation holds for but

one ring, but when more than one ring is present, all the

notional rings must be summed to find the field reduction at

the surface. Let n ¼ bs=Dtc where b� � �c is the round down in-

teger operation. For the values of l¼ 7 eV, a¼ 50 nm, and

k¼ 1, n ¼ 22, 267, 675, and 1476 for Fo [eV/nm]¼ 2, 2.5,

2.75, and 3.0, respectively. Thus, even the value of the first

term of the series Uð1=nÞ varies markedly, as suggested in

Figure 17. Then, and as shown in Figure 18,

�ln �ð Þ � 4kQ

3aFo
bo þ 3� �ð Þ

Xn

j¼1
U

j

n

� �
: (56)

A second requirement is that k be reasonable: it should not

correspond to an unphysical fraction of an electron charge,

but neither should it represent so much charge that the emit-

ted ring undergoes strong internal space charge forces at the

outset: that is, k should be a parameter of order unity.

The onset of SCAFE may therefore be monitored by the

behavior of � as a function of Fo. The behavior is shown in

Figure 17. In a diode configuration with surface roughness at

the cathode, a hemispherical bump would not exist in isola-

tion as the model treated here presumes, but rather there

would be many such bumps, and therefore the unit cell AK

gap to the virtual cathode would have to be comparable to

the representative bump-to-bump separation dtt because of

the effects of shielding. Such a model treats surface rough-

ness as more nuisance than desideratum in characterizing the

influence of roughness on the current that can be drawn

across a diode configuration. When field emission is desired,

the emitters are more conical48,49 or wire-like.9,50 Shielding

is therefore dependent on the character of the emitter itself

and shall be taken up separately.11

V. SUMMARY

Space charge affected field emission conditions in a diode

geometry have been considered from the perspective of discrete

emission events. In the purely one-dimensional model, sheets of

charge are randomly emitted, and oscillations in the current den-

sity are seen to arise as a consequence of the transit time of the

first sheet across the AK ap. When a model of surface roughness

is introduced, the flexibility in choosing the charge density of

the sheets is further constrained by the emission from a protru-

sion. The cross-over between the one dimensional model and

the three dimensional surface roughness model is determined by

the mean distance between surface roughness features due to

how the protrusions shield each other. The unit cell containing a

single emitting feature is dictated by the protrusion-to-protrusion
FIG. 17. The function UðsÞ ¼ �aDFnðssÞ=4kQ using Eq. (54) for a¼ 50 nm,

l¼ 7 eV, D ¼ 10 lm, k¼ 1, and n ¼ bs=Dtc.

FIG. 18. The reduction in current from a single hemispherical boss for vari-

ous fields expressed as a percentage reduction (Eq. (56)), using the parame-

ters of Figure 17.

194902-15 Jensen et al. J. Appl. Phys. 117, 194902 (2015)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

141.212.160.197 On: Tue, 19 May 2015 16:27:56



separation. Within the unit cell, space charge reduction of the

apex field was modeled by the emission of a notional ring of

charge plus its image charge in the hemispherical model. An

estimate of the field reduction at the apex, and its associated cur-

rent per protrusion reduction, was given. The amount of charge

in the emitted ring is constrained by the discrete nature of elec-

tron charge, in distinction to the one dimensional diode model.

The components of the model are directed to provide a means

of introducing the effects of surface roughness and its related

field enhancement into beam optics codes (aka particle-in-cell

or PIC codes) as well as more conventional conical emitters or,

in particular, field emission from elongated carbon fibers with a

mean separation smaller than their length.
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APPENDIX A: THERMAL-FIELD EQUATION

The general Thermal-Field (GTF) equation is18

J F; Tð Þ ¼ ARLDT2N
bT

bF

; bF Eo � lð Þ
	 


; (A1)

N n; sð Þ � n2R
1

n

� �
e�s þ R nð Þe�ns; (A2)

where bT ¼ 1=kBT; bF ¼ @EhðEÞ, where hðEÞ is the Gamow

factor associated with tunneling, and RðxÞ � ð1þ x2Þ=
ð1� x2Þ �0:355x2ð1þ 0:298x2Þ to leading order.18 For the

GTF equation, n is the ratio of the energy slope factors, or

n � bT=bF. For n! 0, the Richardson-Laue-Dushman

equation results

JRLD F; Tð Þ ¼ ARLDT2 exp �U�
ffiffiffiffiffiffiffiffiffi
4QF
p

kBT

� �
; (A3)

where
ffiffiffiffiffiffiffiffiffi
4QF
p

accounts for Schottky barrier lowering due to

the field F. For 1=n! 0, the Fowler Nordheim equation

results and hðEÞ is given by conventional Fowler-Nordheim

theory. Using the Deane and Forbes51 approximation vðyÞ ¼ 1

� 1
3

y2 3� lnðyÞð Þ and letting tðyÞ¼ to�1þð1=6eÞ¼1:0613,

then

JFN Fð Þ ¼ ~AF2�� exp �B
U3=2

F

� �
; (A4)

where � � ð8Q=9�hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
2m=U

p
; ~A � ðA=Ut2oÞðU2e6=4QÞ�;

t2o � 1:1264; A ¼ q=ð16p2�hÞ ¼ 1:5414� 10�6 Amp/eV,

B ¼ 4
ffiffiffiffiffiffi
2m
p

=3�h ¼ 6:8309 1/nm-eV1=2, and Q � q2=16peo ¼
0:35999 eV-nm. For U ¼ 4:5 eV, � ¼ 0:77281. A compari-

son of JGTF to JRLD and JFN is shown in Figure 19. It is

emphasized that the Nordheim functions v(y) and t(y) are im-
plicitly contained in the factors � and to.

APPENDIX B: CHILD-LANGMUIR EQUATION

For Va ¼ qua, the Child-Langmuir equation is

JCL Va;Dð Þ ¼ q

18pQ
ffiffiffiffiffiffi
2m
p V3=2

a

D2
¼ 4e0

9

ffiffiffiffiffi
2q

m

r
u3=2

a

D2
; (B1)

where ua is the anode potential and D is the anode-cathode

(AK) separation, and where the form using ua is the more

conventional form encountered. If written as JCL ¼ KV3=2
a ,

where K is the analog of perveance, then for D¼ 10 lm,

K¼ 2.334 Amp / (eV 3=2 cm2).

APPENDIX C: GENERATION OF RANDOM EMISSION
EVENTS

Methods to generate random numbers of various distri-

butions are known.52 A probability of occurrence PðxÞdx
(an “event”) for a given distribution P(x) is desired to

be evaluated from the generation of a uniform random

number r such that 0 � r � 1. An acceptance/rejection

approach is a common technique but can become computa-

tionally burdensome if P(x) is small for a range of values.

Some forms of P(x) enable alternate approaches. The two

treated here are linear and exponential. Observe that P(x)

satisfies ðL

0

PðxÞdx ¼ 1; (C1)

where L is the range of x over which the distribution P(x) is

non-zero (L can be infinite). The integration can be separated

into regions that contain the same number of events when

the total number of events is large. That is, if there are n
such regions, then for j ¼ 0; 1; :::n� 1,

ðxjþ1

xj

PðxÞdx ¼ 1=n: (C2)

Two cases are of interest in the present study: (i) P(x) is lin-

ear, and (ii) P(x) is exponential.

FIG. 19. Comparison of the general thermal field current density JGTF of Eq.

(A1) with the Fowler Nordheim (field) current density JFN of Eq. (A4) and

the Richardson (thermal) current density JRLD of Eq. (A3) for a temperature

of 1300 K for U ¼ 4:5 eV and l¼ 7 eV.
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In the linear case with L¼ 1, then PðxÞ ¼ 2x. Thus, the

xj are determined by the relationship x2
j � x2

j�1 ¼ 1=n, or

xj ¼
j

n

� �1=2

: (C3)

In the limit that n!1; ðj=nÞ ! r, and so a random number

x that is linearly distributed can be generated from a uni-

formly distributed r by xðrÞ ¼
ffiffi
r
p

.

In the exponential case, L!1 and PðxÞ ¼ e�x (k is

taken as 1), from which expð�xj�1Þ � expð�xjÞ ¼ 1=n, or

xj ¼ �ln 1� j

n

� �
: (C4)

Again, letting ðj=nÞ ! r identifies xðrÞ ¼ �lnð1� rÞ, but

because r is uniformly distributed, so is 1� r, and so

xðrÞ ¼ �lnðrÞ, from which Eq. (23) is obtained. This result

corresponds to the m¼ 0 (no “occurrences”) special case of

an algorithm described by Knuth (Ref. 53, p. 132) for the

treatment of Poisson distributions, from which the designa-

tion “K” in Figure 2 originates.

An alternate method to generate an exponential-like dis-

tribution for N events is to create n bins governed by Eq. (C4),

each containing ðN=nÞ counts per bin (such an approach is

reminiscent of methods to circumvent the computational bur-

den of low probability events by grouping them into classes

from which selections are made54). If n is reasonably large,

then inside each bin, the distribution of random events can be

taken as linearly distributed. Thus, the exponential distribution

can be mimicked by generating two random numbers: r1

chooses the jth bin according to j� 1 ¼ bnr1c, and r2 specifies

the location x in the bin according to ðxjþ1 � xÞ=ðxjþ1 � xjÞ
¼ ffiffiffiffi

r2
p

. This method was labeled “IMC” in Figure 2. It is less

efficient than Eq. (C4) but performs better on the exponential

distribution for large x than would a standard acceptance/

rejection algorithm, and an understanding of it is conceptually

useful in approaching the notional ring model.
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